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Abstract

This article presents a method to estimate flow variables for an open channel
network governed by the linearized Saint-Venant equations and subject to periodic
forcing. The discharge at the upstream end of the system and the stage at the
downstream end of the system are defined as the model inputs; the flow properties
at selected internal locations, as well as the other external boundary conditions,
are defined as the outputs. Both inputs and outputs are affected by noise and we
use the model to estimate this data. A spatially-dependent transfer matrix in the
frequency domain is constructed to relate the model input and output using modal
decomposition. A data reconciliation technique is used to incorporate the error in
the measured data and results in a set of reconciliated external boundary conditions;
subsequently, the flow properties at any location in the system can be accurately
constructed from the input measurements. The applicability and effectiveness of
the method is demonstrated with a case study of the river flow subject to tidal
forcing in the Sacramento-San Joaquin Delta, in California. We used existing USGS
sensors in place in the Delta as measurement points, and deployed our own sensors
at selected locations to produce data used for the validation. The proposed method
gives an accurate estimation of the flow properties at intermediate locations within
the channel network.
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1 Introduction

In hydraulic systems, numerous factors could lead to measurement errors, for
example broken gauges, process leaks, sensor drifts, improper use of measur-
ing devices, and other random sources [1]. Data reconciliation, is an effective
method to tune-up the measurement data [21] [5] [10] [2], which has been
applied in several engineering fields [11] [3] [20] [25]. The objective of data
reconciliation is to use information redundancy to handle errors in real-time
measurements.

In the field of process control, data reconciliation is a part of the general state
estimation or reconstruction process for dynamical systems, using Kalman fil-
tering [8]. However, in certain cases, and for given time intervals, dynamic
effects can sometimes be neglected which leads to simplified versions of the
general approach, applicable to static models.

This article presents theoretical results applicable to data reconciliation for
tidally forced networks of open channels. Using the modal decomposition tech-
niques, we are able to transform dynamic constraints into static constraints
in the frequency domain, and subsequently obtain a static data reconciliation
problem, which is easier to resolve and can lead to accurate results. Generally,
this static data reconciliation problem is to minimize the measurement errors
while satisfying the static constraints of the proposed model.

The proposed linear network model is constructed on the basis of analytical
solutions to the Linearized Saint-Venant equations (LSVE) in the frequency
domain [9] [12] [4]. With the assumption of a backwater curve model [22], a
more realistic transfer matrix function has been introduced [16], which we use
in the present article.

This article extends the general transfer matrix function approach to a chan-
nel network. A spatially-dependent transfer matrix is constructed, relating a
selected set of model inputs to the output variables. The transfer matrix is a
function of channel width, channel length, bed slope, mean discharge, mean
stage and Manning coefficient. This set of parameters needs to be chosen care-
fully to characterize the geometry of the channels, as the uncertainty of the
parameters would contribute to the errors in the model output.

With this linear model in the frequency domain, the static data reconciliation
problem is shown to be equivalent to a quadratic problem. The objective func-
tion used in the present study is a weighted Lo-norm of the difference between
the measured and reconciliated data. The linear network model constructed



serves as the constraints in the optimization problem. A closed-form optimal
solution is obtained, resulting in a set of reconciliated boundary data consis-
tent with both the linear network model and the statistical assumptions on
measurement errors. Subsequently, we apply the reconstructed boundary con-
ditions to the linear network model to obtain an accurate forward simulation
of the flow within of the network domain.

This article is organized as follows: Section II introduces the general framework
of linear models, i.e., LSVE in the frequency domain, the spatially-dependent
transfer matrix. A channel network model featuring one-dimensional non-
uniform flow is subsequently described, and the solution of the data recon-
ciliation problem in the static case is addressed. Section III applies the lin-
ear model to a channel network in the Sacramento - San Joaquin Delta in
California. Static data reconciliation is applied to handle the errors in the
measurements. The effectiveness of the method is assessed by correlating the
model estimations with field data at three intermediate locations in the net-
work, which serve as validation points. Section IV summarizes the study and
presents the scope of our future work.

2 Proposed Method

2.1 General Considerations

The general class of hydraulic system studied in the present article is a dis-
tributed network of channels subject to quasi-periodic tidal forcing. Sensing
on this hydraulic system is done using fixed Eulerian U.S. Geological Survey
(USGS) sensors, subject to measurement errors. The motivation of the work
is to derive the “most likely” flow conditions from the measured data available
in a given period of time (at least a few weeks to catch the tidal period), and
forecast the future flow variables. The goal of the method is thus not real time
estimation, as traditionally done in data assimilation [23], but forecast based
on measured forcing.

The flow variables are related to each other by a mathematical model. There-
fore, if the measurement data was error free, it would satisfy the model. Be-
cause the number of points at which the variables are measured is usually
larger than needed to fully prescribe the model, there is “information redun-
dancy” in the system. Once information redundancy exists, data reconciliation
can be implemented to account for measurement error.

The ultimate goal of data reconciliation is to use such information redun-



dancy in a system to have the data self-corrected using the model. An effective
data reconciliation method allows the detection of any inconsistent or biased
measurements, and furthermore provides corrected values (namely estimated
measurements).

It should be noted that any information redundancy is model-specific. We
therefore need to first construct a “good” hydraulic model to characterize the
flow system, as described in the following section.

2.2 Linear Channel Network Model

2.2.1 Transfer Matriz Representation of Saint-Venant Model

The Linearized Saint-Venant Equations (LSVE) have been widely used in the
open-channel hydraulic systems literature [7], [15], [17], [14]. They describe
the perturbed discharge ¢(x,t) and stage y(x,t) with two coupled partial dif-
ferential equations (PDESs). For a rectangular cross-section, these equations
are given by:

dy 0q
9 + 2‘/()(:13)% Bo(x)q + ozo(x)% Yo(z)y =0 (2)
where ag(z), Go(z) and ~o(x) are given by:
a0 = (Co ~ Vo)To 3)
29 dYo
=% <Sb - d) ()
2, AYp
70 = 9T (14 ko)Sy — (1 + ko — (Ko = 2)F) = (5)

with kg = 7/3—8Y,/(3(2Yp+1T)); Tp is denoted as a uniform width at the free
surface, Cy = /Yy is the wave celerity, Fy = V/Cj is the Froude number,
Vo = Qo/Ap is the steady state velocity, @)y is the average discharge along
the channel and Y5(X) is the average stage at the downstream point of the
channel, X is the river reach length (m), Sy is the bed slope (m/m).

The upstream and downstream boundary conditions are the upstream dis-
charge perturbation ¢(0,¢) and the downstream stage perturbation y(X, 1),
respectively. The initial conditions are given by y(z,0) = 0 and ¢(z,0) = 0 for
all z € [0, X].

To facilitate the mathematical analysis, we rewrite the linearized Saint-Venant



equations as follows:

68 ") - («4(:1:)38 +B(x)> et (x,t) € [0, X] x [0, +00)
Pyl 1) ! y(@,t)
(6)
Where,
Alz) = _21% B O s (M)
S S 0 0

The application of Laplace transform to the linear PDE system (6) leads to
the following ordinary differential equations (ODEs) in the variable z, with a
complex parameter s.

= A @) [B() — s [ 1) (®)

y(e,s) y(w, s)

d [alx,s)
dx

Following the method developed in [22], and further modified in [16], a trans-
fer matrix G(z, X, s) = (¢;;(z, X, s)) for the non-uniform channel relates the
boundary conditions and intermediate flow variables, and is defined as:

q(z,s) G X.s) q(0, s) (©)
y(z,s) y(X,s)

G(z, X, s) is a function of channel length X, average discharge @y, average
downstream depth Yy, average width Tj, bed slope S,, and Manning coeffi-
cient n of the channel. The upstream and downstream boundary conditions are
the upstream discharge perturbation ¢(0, s) and the downstream stage pertur-
bation y(X, s), respectively. Because of the distributed nature of the system,
this transfer function also depends on the coordinate x in the channel, since it
relates inputs ¢(0, s) and y(X, s) to the state of the system ¢(z, s) and y(z, s)
at any x in the channel. Please refer to the appendix for the details about the
transfer matrix.

2.2.2  Transfer Matriz Model for Channel Networks

The model (9) can be readily applied to tidally driven channel networks. The
problem of interest can be stated as follows, and is illustrated in Figure 1.
Given a set of “external” boundary conditions of a network, at which we
have measurements, reconstruct flow conditions at “internal” locations (also
referred to as boundary conditions). This type of problem appears in our
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Fig. 1. Representation the system of interest for estimating internal boundary condi-
tions (Internal BC) using data reconciliation on external boundary conditions (Ez-
ternal BC): data is given at the three external conditions of channel 1, 2 and 3; the
state of the system is computed at three internal locations of the system labeled 1, 2
and 3.

data assimilation work, in which we need estimates of boundary conditions at
locations where fixed sensors are not available. The fundamental approach to
build a network model is as follows:

e Step 1: Decompose the channel network into individual channel reaches,
and apply the linear model (9) to each branch. For each of the river reach
indexed by i, the flow variables ¢;(x, s), y;(x, s) denote the perturbed dis-
charge and stage in the frequency domain respectively, X; denote the length
of the channel. The junction of the river reach is defined as the node of the
channel network.

e Step 2: Impose the internal boundary conditions at every junction to en-
sure flow compatibility. Considering a simple river junction illustrated in
Figure 1: for each channel i, we will have the upstream boundary condition
¥:(0, ), ¢:(0,s), and downstream boundary condition v;(X;, s), ¢:(X;,s). If
these boundary conditions are at the inside nodes of the channel network,
they are called internal boundary conditions, otherwise they are labeled as
external boundary conditions. The linear relationships of hydraulic inter-
nal boundary conditions at a junction are specified by equations of mass
and energy conservation. Assuming no change in storage volume within the
junction, the continuity equation can be expressed by:

ql(le S) = Q2(07 S) + C]3(O,S)

When the flows in all the branches meeting at a junction are subcritical,
the equation for energy conservation can be approximated by a kinematic
compatibility condition as:

yl(Xl, 8) = 42(0, 5) = y3(0, 5)

where X is the downstream point of each channel 7, and 0 is the upstream
point of each channel 7.



e Step 3: Assemble the equations for each individual channel and interior
junctions together to model the entire network. The flow variables at the
boundary of each channel are represented by a linear relationship:

M(s)Z(s) = 0 (10)

where Z(s) is the concatenated vector of all [¢; (0, s), ¢:(Xi, s), 4i(0, s), y: (X5, s)|7,
where ¢ = 1,--- | N, Z(s) is thus the vector comprising the discharge and
stage variables at the upstream and downstream ends of all channels; M(s)
is a matrix of appropriate dimension encoding the previous constraints.

e Step 4: Evaluate the unmeasured flow variables inside the channel network.

a) Specify the interior boundaries.

In a channel network system, we define a subjective subset of bound-
ary conditions (Zgipenpc C Z), which leads to a unique solution of model
(10). This subset should satisfy: dim(Zgienpc) = dim(Z) — Rank(M). All
the other unknown boundary variables (interior and external), denoted as
Zotherse = Z \ ZgivenBe, are therefore estimated with model (10). Model
(10) now has the form:

ZotherBC — R<S>ZgivenBC (11>

ZgivenBC
where R(s) is a matrix of appropriate size. Given Z = | * |, M(s) =

ZotherBC
(R(s)|-1].

b) Estimation of the perturbed discharge and stage along the channel. Tt
is achieved by a simple application of transfer function analysis:

%’(% 3) . gi,ll(l’aXi,S) 91',12(96’,)(@‘ 3) Qi<073) (12)
yi(%s) gi,21(ani7 5) gi,ZQ(ania 5) yi(Xz‘, 8)
1=1,---,N

where, G;(z, X;, s) = (gi1(z, Xi, s)) is the distributed transfer matrix based
on the information of channel 7.

2.8 Data Reconciliation

In practice, the measured data called Y,, is normally a superset of the data
required to uniquely define the system. i.e., Zgpenpc C Yy, € Z. When this is



the case, we can use the information redundancy and apply data reconciliation
to detect and handle the measurement errors. Data reconciliation requires a
process model and statistical characteristics of the measurements.

Using modal decomposition, we are able to convert the dynamic model (6) to
a “static” model, in which the measurable variables are linked by a algebraic
relationship in the frequency domain:

P(s)Y(s) =0 (13)

where Y (s) = [¥7,Y5,Y3,---] C Z(s) is a vector of noise free measurements,
and where P(s) is a sub-matrix of M (s) with the appropriate dimension.

It is assumed that the measurements are independent and subject to an ad-
ditive noise. The measured data Y,, is composed of the “ideal” measurements
vector Y and a noise vector € :

Y, =Y +¢ (14)

This noise vector e is assumed to follow a Gaussian distribution with zero
mean and weight matrix W = diag(o?,03,---,02). Here o; represents the
noise standard deviation for each measurement. Note that the matrix W is
chosen (positive definite), and that its components are picked to have the error

to be minimized, in the present case a weighted L? norm.

The objective of data reconciliation is to obtain estimated values Y close to
the measurements Y,, while satisfying the “static” linear model (13). This
can be formulated as an optimization problem with linear constraints. The
cost function to minimize is the weighted quadratic error between the mea-
surements Y,, and the reconciliated data Y. The constraints are given by the
model (13). The reconciliation problem in the spectral domain now becomes
a least square problem with linear constraints. It reads:

min. =Y -Y,) "WYY -Y,)
st. PY =0 (15)

We hereby use the method suggested by [13] to solve the above data reconcil-
iation problem. The constrained optimization problem is transformed into a
corresponding unconstrained problem [6], using the Lagrange multiplier vector
v . The Lagrangian of the problem reads:

A

LY, v)= Y =Y,) "WYY -Y,) + 2" PY (16)

In order to obtain the unknown variables, take partial derivatives and set them



to zero:

L N
aA =20V - Y,) "W l4+2TP=0
%Y
L R
— =2 PY = 1
5 0 (17)

Rewrite the above equations as:

w-t Pt Y w-ty,,
= (18)
P Odim(u)xdim(l/) 4 Odim(y)xl
Thus,
-1
. w1 PT W=y,
Y = (Idim(Ym) Odim(Ym)xdim(u)) (19)
P Odim(u)xdim(u) Odim(u)xl

where, matrices I and 0 are Identity Matrix and Zero Matrix of appropriate
size. Note that this program can be solved numerically easily, with standard
optimization software such as CPLEX, MATLAB, CVX etc[6].

The reconciliated measurements }A/, can then be used to obtain the desired
internal boundary conditions using equation (10, 11, 12).

Remark 1 The proposed approach thus consists in assuming high confidence
in the model, and finding the “best” estimation, i.e. the estimation which min-
imizes measurement error. This is a standard procedure in data reconciliation.

3 Application to the Sacramento River

3.1 Description of the system and assumption

The Sacramento-San Joaquin Delta in California is a valuable resource and
an integral part of California’s water system. This complex network covers
738,000 acres interlaced with over 1,150 km of tidally-influenced channels and
sloughs. This network is monitored by a static sensor infrastructure subject to
usual problems of inaccuracy and measurement errors for interested sensing
systems. The area of interest for our experiment is located around the junc-
tion of the Sacramento River and the Georgiana Slough, as shown in Figure 2.
Most of the time, the direction of mean river flow is from north to south, as
indicated with arrows. During the tidal inversion, the water flows in the oppo-
site way. For experimental purposes, we need the boundary conditions at the
three locations labeled A, B and C, but only get the measurements at SDC,
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Fig. 2. Test area in the Sacramento River and the Georgiana Slough.

DLC, GSS and GES. The method described in the previous section enables
us to do that.

Four USGS stations, named SDC, DLC, GES, and GSS, are located at the ex-
ternal boundaries of this deployment field. The stations are marked as squares
in Figure 2. Both discharge and stage are collected every 900 seconds at these
stations. Note that in the USGS measurement system, only the stage are mea-
sured directly, the discharge data is estimated by a rating curve, which is a
relation between stream stage and streamflow. The relation of stream stage to
streamflow is always changing, and need to be calibrated frequently. It will in-
troduce errors if the rating curve has not been validated in time. More detailed
information can be found at http://ga.water.usgs.gov/edu/measureflow.html.
The field data was collected between 10/23/2007 and 11/13/2007. The raw
field data is noisy, and the measurement errors are assumed to follow a normal
Gaussian distribution. In addition, the following simplifications for the flow
model have been made in this study:

e The flow can be represented by a one dimensional model.

e The channel geometry is fixed, as the effects of sediment deposition and
scour are negligible during the experiment period.

The channel geometry can be modeled by a rectangular cross-section.

The lateral and vertical accelerations are negligible.

The pressure distribution is hydrostatic.

There is no significant jump along the bathymetry of the channel, and the
bed slope is smooth and small.

e The water surface across any cross-section is horizontal.

These assumptions have been verified in practice during experimental field
deployments performed by our lab. The model parameters are the average
free surface width Tg;, the average bottom slope Sy;, the average Manning’s
coefficient n, the average discharge );, and the average downstream stage Yx;
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for each channel ¢ (i = 1,--- ,5). These parameters are known to us experi-
mentally. Based on measurements available to us at the SDC, DLC, GSS, and
GES, the field data at three intermediate locations in the channel network are
chosen to assess the accuracy of the method (at locations marked in triangles).

3.2 Modal Decomposition of the Measured Data

Since both the discharge and stage are measured at the four USGS stations
(SDC, DLC, GSS, and GES), the measured flow variable vector Y,, is:

Ym :[QT(O,t),y?%([),t),qgl(XQ,t),y;n(Xg,t),qT(X4,t),yT(X47t),
Q?(X57t)7ygn<X57t)]T (20>

where m stands for measured. The fundamental idea is to decompose the
measured variables Y,, into a finite sum of N dominant oscillatory modes. In
the case of a channel network influenced by the ocean at the downstream end,
these modes are essentially the dominant modes produced by tidal forcing.
The measured variables are therefore expressed using modal decomposition:

N
Y, = Z [Dkej”’“t + Dje vkt (21)
k=0

where,

T
Dk _ {d(1,1,0)7dl(Cl,Q,O)’d(2,1,X2)’d](€2,2,X2)’dlg4,1,X4)’d(4,2,X4)’dl(€5,1,X5)7dl(€5,2,X5)}

k k k
(22)
Dy = [d“?V|T are the Fourier coefficients of the spectral decomposition of
Y., where «, (3, v represent the channel number, discharge/stage variable,
location of each channel reach respectively. w;’s are the set of frequencies used
for modal decomposition.
Figure 3 shows the spectral analysis for the discharge data at station SDC"
There are three dominant tidal frequencies in the system: w; = 2.31 x 107> 57!
(or period 12.4 hrs tide, corresponding to the M2 tide generated by the moon),
wy = 1.16 x 107> s~ (or period 24 hrs tide, corresponding to the K1 tide
generated by the sun) and a w3 = 1.11 x 107° s~! (or period 25 hrs tide).
The power spectrum is cut-off at 70ft3/s? to determine the 30 dominant
frequencies. The second plot in Figure 3 and Figure 4 indicates that 30 modes
are sufficient to capture the signal. The amplitude at 0 Hz is essentially the
nominal stage. Similar arguments hold for the other measurements.

11



Spectral decomposition of the discharge at SDC
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Fig. 3. Spectral analysis of the discharge at the SDC Station.

L2 error between signal and modal decompostion for the discharge at SDC
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Fig. 4. Relative percent error between measurement data and modal representions
as a function of the number of modes chosen for the decomposition.

3.8  Hydraulic Model of Sacramento River and Georgiana Slough
The open-channel network system in this study here consists of five individual

channels, as shown in Figure 2. For each channel, the discharge and stage at
upstream and downstream are related by a non-uniform transfer matrix:

ai(Xi,s) \ [ 911 (Xe, Xiy 8) gi0(X5, X, s) (0, s)
y’b(07 8) 9221(07)(2'78) 9222(07)(2'78) yl(X’LaS)
i=1,---,5. (23)
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The linear relationships between internal boundary conditions at the two
junctions are:

y1(X1,5) = y2(0, )
y2(0,8) = y3(0, 5)
q1(X1,8) = ¢2(0,8) + q3(0, 5)
y3(X3, 8) = y4(0, 5)
y4(0,s) = y5(0, s)
q3(X3,8) = q4(0,s) + ¢5(0, s) (24)

A total of twenty flow variables ¢;(z,s), y;(x,s) (for x = 0 or X;, i =
1,2,---,5) are included in the system (23) and (24). These flow variables
are related in a linear model M(s)Z(s) = 0 equation (10), with

Z(S) :[(h(()’ 8)7 y1(0, 5)7 QI(Xla 5)3 yl(Xla 5)7 q2(03 S)a y2(0, 5)3 QQ(XQ, 5)7 yQ(X27 5)3
Q3(07 8)7 y3(07 S)v q3(X37 S)a Z/3(X37 8)7 Q4(O, S), y4(07 5)7 Q4(X47 8)7 y4(X47 S)a
q5(07 3)7 y5(07 8)7 Q5(X57 S)a y5(X57 8)]T'

Here, M(s) is a 16 by 20 matrix, which encodes the 16 equations comprised
of (23) (five channels), and (24) (internal boundary conditions).

Since rank (M(s)) = 16, given four boundary flow variables Zyyenpc C Z,
all the other sixteen boundary flow variables Zonerpe = Z \ Zgivense can be
uniquely determined by the sixteen equations set (23) (24).

Let us assume that the four known external boundary conditions of the net-
work are: the discharge at SDC": ¢, (0, s), the stage at DLC'": y3( X5, s), the stage
at GSS: ys(Xy,s) and the stage at GES: y5(X5,s). All the other boundary
flow variables can be solved by equation (11). More specifically,

ZgivenBC = [ql (07 8)7 3/2(X27 5)7 y4<X47 3)7 y5(X57 3)]T
ZotherBC :[91(0, 3)7 Q1(X1, 8)7 yl(Xh S)v QQ(Ov 8)7 QQ(O, S)a q2(X27 S)? Q3(0, 8)7 y3(07 S)a
q3(X37 8)7 yS(X3> 5)7 q4(07 5)7 y4(07 8)7 Q4(X4> 5)7 q5(07 5)7 y5(07 8)7 Q5(X57 S)]T

R(s) = Ri(s) ' Ry(s)"

13



01 —g112(s) 0 00 0 00 0 0 00 0 00
1 0 —g122(9) 0 00 0 00 0 0 00 0 00
00 0 —g211(5) 01 0 00 0 0 00 0 00
00 0 —g221(s) 10 0 00 0 0 00 0 00
00 0 0 0 0g311(s)0—1g312(s) 0 00 0 00
00 0 0 0 0g321(s)0—1g322(s) 0 00 0 00
00 0 0 00 0 00 0 —ga11(s) 01 0 00
00 0 0 00 0 00 0 —ga21(s) 10 0 00
Ri(s) = ’
00 0 0 00 0 0O 0 0 0 0—gs11(s) 01
00 0 0 00 0 00 0 0 0 0—gs501(s) 10
00 1 0 —-10 0 00 0 0 00 0 00
00 1 0 00 -1 00 0 0 00 0 00
0-1 0 1 01 0 00 0 0 00 0 00
00 0 0 00 0 00 1 0 -10 0 00
00 0 0 00 0 0O 1 0 00 0 —-10
00 0 0 00 0 01 0 -1 00 -1 00
g1,11(8) g121(s) 0 0 00 O 0 0 0 000000
0 0 g212(8) g2.22(s) 00 0 0 0 0 000000
Ro(s) = ’ ’
0 0 0 0 00g412(8) ga22(s) O 0 000000
0 0 0 0 00 O 0 g512(5) g522(s)000000
Table 1
Parameters for the Sacramento River and the Georgiana Slough
Channel | Qoi(m?s™") | Yxi(m) | Toi(m) | Spi(m/km) | n(m~"/%s) | Xy(m) | Co(m/s) | Lo/Co(s)
i=1 186.7 5.6 115 -0.04 0.0323 2800 7.42 377.4
1=2 83.9 4.1 110 -0.09 0.0323 2000 6.30 317.5
1=3 113.1 7.7 110 -0.04 0.0323 1300 8.71 149.3
1 =4 58.1 4.0 56 -0.19 0.0323 600 3.40 176.5
1=25 65.2 5.3 89 -0.04 0.0323 1600 7.19 222.5

The parameters of the model are listed in Table 1. The mean discharge
(Qoi) of the channels 1, 2, 4, 5 are computed using the measured discharge
at SDC, DLC, GSS, GES, respectively. It is clear that the measurement
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data are inconsistent, since Qo1 # Qo2 + Qos + Qos. To partially compen-
sate for the measurement error, the mean discharge at channel 3 is set to be:

Qoz = [(Qo1 — Qo2) + (Qoa + Qos)] /2.

3.4 Data Reconciliation

Let us assume that the measured variables Y,, are independent and subject to
a Gaussian distributed noise. Based on the static model (11), the measurable
variables are linked by a static relationship of the following form:

P(s)Y(s) =0 (25)
where

_R(S)l,l R(S)l’g R(S)lg RS ,
( (

P( ) R 8)61 R 8)62 R(S)G?) R S 6,4 O _1 0 O
S) =
R(S)131 R<5)132 (5)133 R(3)134 0 0 -1 0
_R(5>161 R(s)162 R(s)163 R(s)16a 0 0 0 -1

given Y (s) \ Zgivennc is the first, sixth, thirteenth and sixteenth element of
Zotherpe- Now, combining the solution of the data reconciliation problem (19)
with the static model (25), reconciliated measurements Y can be calculated.
Assume that Y is in the form:

N
S (B 4 B ] 20)

k=0
where B, = [b,(;’ﬁ M7 is the Fourier coefficients vector of the spectral de-

composition of Y, and «, 3, v represent the channel number, discharge/stage
variable, location of each channel reach respectively:

T
Bk _ {b’(ﬁl,l,o)7 b](CLQ’O), b](f?,l,Xg)7 b](€2,2,X2)7 b,(§471’X4), b](€4’2’X4), b}(€5,1,X5)7 b’(€572,X5)} (27)

For specific dominant w;,, k = 1,---, N, the coefficient vector Bj in the
equation (26) is calculated by equation (19):

-1
WL P(s)T W-1D,
Bk = (I&g 0&4) (28)
P(s) 044 041

The reconciliated boundary condition data is shown and compared to mea-

sured data in Figures 5 and 6. For clarity, the mean flow has been subtracted
from the plots in the interest of magnifying the display scale. From the figures,
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the reconciliated data is very close to the measurements. The difference be-
tween the reconciliated data and measurements is further evaluated in Table
2. Three primary evaluation measures are analyzed here:

e The maximum value is the maximum difference between the reconciliated

and measured data at the same time steps.
e The coefficient of efficiency E is defined as [18]:

|

zﬂmrwm]
S (ui — )2

(29)

where u; is the flow variable of interest (for example ¢; or y; in this study), u;
is the reconciliated /modeled flow variable, @; is the mean of u;, for i = 1 to N
measurement events. If the measured data is perfect, £ = 1. If £ < 0, the
corresponding measurement is not reasonable and must be excluded from
the modeling procedure.
e The last statistic evaluation of the analysis is the correlation coefficient p,

given by:

Sor (ui — ) (i

~

— Uz)

p_
VI (s — )2 S (i~ )2

(30)

where ; represents the mean of reconciliated flow for i = 1 to N measure-

ment events.

Table 2
Max-value, p-value and E-value for reconciliated data and measured data
Variable | USGS Station | Max-value | E-value | p-value
SDC 23.66 m3/s | 0.9930 | 0.9975
) DLC 28.23 m3/s | 0.9368 | 0.9883
Discharge (
GES 13.00 m3/s | 0.9968 | 0.9985
GSS 18.41 m3/s | 0.9368 | 0.8369
SDC 0.05m 0.9889 | 0.9947
DLC 0.12m 0.9504 | 0.9759
Stage
GES 0.07 m 0.9847 | 0.9935
GSS 0.05 m 0.9938 | 0.9989

3.5 Method Validation

We used existing USGS sensors in place in the Delta as measurement points,
and deploy our own sensors at selected locations to produce data used for the
validation. We validate the method by using existing and deployable moni-
toring infrastructure: USGS fixed sensor stations (see Figure 7) are used as
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Fig. 5. Reconciliated boundary condition data vs. measured data.
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measurement points (see exact location in Figure 2); deployable UC Berkeley
sensors (see Figure 7) are placed at locations A, B, C on the map of Figure 2.
The measurements were collected between 11/01/2007 and 11/12/2007, and
serve as a validation data set for this method.

Location A is downstream of the junction of Sacramento river and Delta Cross
channel; Location B is downstream of GSS branch; Location C is downstream
of Sacramento Branch. Without loss of generality, the discharge at Location A,
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Fig. 7. Left: USGS Sensor station at GSS, used as a measurement sensor. Right:
Deployable ADCP sensor, used in Section 3.5 for gathering the validation data (three
of them were deployed between 11/01/2007 and 11/12/2007 in order to gather the
data for this study).
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Fig. 8. Validation of the model output with measurement using USGS measurements.

along with the stage data at three locations, are used to test the model.

3.5.1 Model validation with measured boundary conditions

Following the steps described in Section I, the flow variables at the boundaries
of each branch Z,..pc are calculated using Equation (11). Here, the mea-
sured discharge at SDC, stage at DLC, GES, GSS are used as Zgienpc. The
flow variables along each branch are estimated using the non-uniform transfer
matrix (Equation (12)). The simulation results are shown in Figure 8.

Model calibration and validation are further evaluated using E-value and p-
value. Table 3 summarizes the values of p and F in the validation sets of our
channel flow model.

From Figure 8 and Table 3, it is clear that Location A is the location where
the discharge is estimated withe least precision, as the characteristics of either
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Table 3
p-value and E-value for model validation without reconciliation (Section 3.5.1)

Location A A B C

Variables | discharge stage stage  stage

E 0.7219 0.9820 0.9796 0.9807
p 0.8555  0.9922 0.9916 0.9927
Fluctuation compunent of slage @ Upstream (Locauon A) . Fluctuation component of stage @ Downstream (Location B)

Mode\ Outpul Model Output
Measuremem Measurement
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Fig. 9. Validation of the model output with measurement using reconciliated BC.

the phase or the amplitude suffer a significant offset. Although we have a
precise stage estimation at Locations A, B, C, the model does not provide
enough information to characterize the flow in the experiment area.

3.5.2  Modal validation with reconciliated boundary conditions based on all
the measurements

We will use reconciliated data shown in Figure 5 as Zy;,enpc. The flow variables
ZotherBo, ¢i(s, ), yi(x, s) are calculated using Equations (11) and (12). The
simulation results are shown in Figure 9.

The values of p and F are listed in Table 4. Both p-values and F-values are

Table 4
p-value and E-value for model validation after reconciliation (Section 3.5.2)

Location A A B C

Variables | discharge stage  stage  stage

E 09775  0.9643 0.9768 0.9612

p 0.9895  0.9876 0.9897 0.9875

close to unity. Table 4 and Figure 9 thus indicate that the proposed model
reconciliation approach provides a higher accuracy in the flow estimation.
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Fig. 10. Error distribution between the reconciliated data and USGS measurements
(perturbation discharge at DLC' is added on purpose in the data set).

3.5.8  Fxclusion of erroneous sensors

The data reconciliation method enable us to detect and exclude sensors with
erroneous measurements and further estimate the boundary conditions using
the remaining properly working sensors. Based on known results in data recon-
ciliation, when the reconciliated data is close to the “true” data, the difference
between the reconciliated and measured data must follow a Gaussian distribu-
tion with a zero mean. If this condition is not satisfied, the sensor is deemed
to be malfunctioning and not suitable for measurements.

In order to test the performance of our method, we first intentionally add a
large (10 times in magnitude) perturbation to the discharge data measured
at DLC, and conduct the standard data reconcliliation procedure described
in preceding sections. The probability density function of the difference be-
tween the reconciliated data and measured data (Y —Y,,) is calculated and
compared in Figure 10. A Pearson’s chi-square (x?) test is further applied to
assess whether this probability distribution differs from a theoretical Gaussian
distribution [19] [3]. The Pearson’s x? statistic is calculated as:

=y Ok (31)

x? = the test statistic that asymptotically approaches a y? distribution
O; = an observed frequency

E; = an theoretical (Gaussian) frequency

n = the number of possible outcomes of each event

From the data (see in particular subfigure in Figure 10), it is visually obvious
that the difference between the measured and reconciliated discharge at sta-
tion DLC does not follow the Gaussian distribution, implying that the sensor
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Fig. 11. Error distribution between reconciliated and measured data (Discharge at
DLC is removed from the data reconciliation process).

is malfunctioning and should be excluded from the data sets.

We then remove the discharge at DLC from the measurement data, and re-
peat the data reconciliation procedure. The probability density functions are
showed in Figure 11. The difference between the reconciliated data and USGS
measurements is then more likely to follow a standard Gaussian distribution.
In summary, the y? values are evaluated and assembled in Table 5. Note that
a small y2?-value indicates that the observation data distribution is likely to
follow a normal distribution.

Table 5
x? value for different cases.

Variables with wrong DLC-discharge data | without DLC discharge data
discharge at SDC 695.55 157.80
stage at SDC 180.20 226.03
discharge at DLC 1200.64 N/A
stage at DLC 369.80 234.73
discharge at GSS 171.36 256.62
stage at GSS 106.60 105.22
discharge at GES 675.58 219.09
stage at GES 159.71 144.54

Furthermore, we use the same three locations (A, B, C) in the experiment
domain to validate the reconciliated data. Table 6 compares the p-value and
E-value for the two cases: with the erroneous sensor and without the erroneous
Sensor.

It is rather interesting to note that modal output is not affected by the inten-
tionally perturbed sensor data, meaning that the data reconciliation method
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Table 6
p-value and E-value for modal validation (with and without discharge @ DLC).

Location A A B C

Variables discharge stage stage  stage

E (with wrong sensor) 09777  0.9599 0.9762 0.9567

E (without wrong sensor) | 0.9676  0.9651 0.9788 0.9611

p (with wrong sensor) 0.9889  0.9867 0.9894 0.9867

p (without wrong sensor) 0.9893  0.9892 0.9908 0.9891

is robust enough to provide satisfactory boundary conditions even if one of
the sensors is malfunctioning.

4 Conclusions

This article proposes a new method to estimate the flow variables in a chan-
nel network system subject to periodic forcing. A spatially-dependent channel
network model is constructed in the frequency domain using LSWE transfer
matrix for the non-uniform steady state case. Modal decomposition allows the
output response to be expressed in terms of the spectral coefficients of the
input variables and the transfer matrix coefficients evaluated at appropriate
locations. Data reconciliation in this case is reduced to a static least-square
minimization problem in the frequency domain, and enables a efficient recon-
struction of noisy boundary measurements. Subsequently, the flow properties
at any location in the system can be readily predicted. The approach proposed
in this study has been applied to a channel network in the Sacramento-San
Joaquin Delta, using four USGS fixed sensors as measurement points, the flow
prediction being successfully validated at three intermediate locations of the
channel system, using deployed sensors from UC Berkeley.

This method is now used for short term forecast of internal condition in the
Georgiana Slough and Sacramento River, which we use for our experimental
drifter and submarine deployments. This information is particularly useful for
our ongoing data assimilation and inverse modeling studies currently under-
way, using Lagrangian sensors.
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APPENDIX

Transfer Matrix Representation of Linearized Saint-Venant Model
The application of Laplace transform to the linear PDE system (6) leads to
the ordinary differential equations (ODESs) in the variable z, with a complex
parameter s.

= gs(J:) (A'1>

In the case of designing and analyzing small-scale flood management systems,
such as storm sewers and highway drainage, Uniform Flow is a good simplified
model which assume the channel invert slope and the energy grade line slope
are equal (S, = Sy). However, in real-world situation, this assumption is rarely
represented, and backwater approximation is introduced to simulate the Non-
uniform Flow.

o Transfer Matriz for Uniform Flow

Remark 2 (Uniform flow) In the case of uniform flow, the flow variables
are constant along the length of the channel, i.e., the discharge Qo(x) =
Qo = Qx and the stage Yo(x) =Y, (normal depth).

A closed-form solution of the linearized Saint-venant equations in the uni-
form flow case can be obtained, relating the flow variables at any point x of
the river reach ¢(z, s), y(x, s) to the boundary conditions ¢(0, s) and y(X, s)
(referring to [15] for details).

(q<x,s>> _ (gmx, ) gyl X, s>) (qm,s)) )
y(z,s) 951 (2, X, s) g55(x, X, s) y(X,s)
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Fig. 12. Backwater curve approximation

where,
gu (x x S) B )\26)\1x+>\2X _ )\16)\21‘+/\1X
115 % AgereX — )\ eMX
6)\117 - 6>‘2z

g%2<l',X, 3) = TOS

Ager2X — e X
)\1)\2 6)\22+)\1X _ e)\1$+)\2X
Tos )\26>‘2X — )\16>‘1X
Ao Az
)\26 )\16
2X 1
2€>‘ X 16)‘ X

go1(z, X, ) =
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Here, \; and A, are the eigenvalues of the ODE system (A-1), and are given
by:

_ 2ToVos + 0

Ly VAC2TEs2 + 4To(Voryo — cofo)s + 72
20[0

20[0

Ai(s) +(

(A-3)

In the following sections, the transfer matrix for the uniform case is denoted
as G"(z, X, s) = (gi5(z, X, s)).
Transfer Matriz for Non-uniform Flow

To solve a hydraulic problem in realistic cases, the backwater approxi-
mation is assumed to study flow regimes, in which the water elevation is
not constant along the reach [22]. Following the method in [22], and further
modified in [16], the backwater curve defined by equation (A-5) is approxi-
mated by two straight lines, as shown in Figure (12).

on(l’) .
=0 (A-4)

dYb(Q?) _ Sb — Sfo
dx 1— Fo(l'>2

(A-5)

The river reach is then decomposed into two parts: a uniform part and a
backwater part. The intersection of the two parts is denoted by x;. Let x,
denote the location in the uniform part, z, = x — x1 denote the location
in the backwater part, X, = x; denote the length of the uniform part, and
X, = X — 1 denote the length of the backwater part. Let G“(xy, Xy, s)
and G(wy, X3, s) denote the transfer matrices for the uniform and backwa-
ter parts respectively; while G°(zy, X3, s) has the same form as the trans-
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fer matrix G"(x,, Xy, s). The transfer matrix for the non-uniform chan-
nel G"(z, X, s) = (gfs(v, X, s)) compromises G*(,, Xy, s) and G®(xp, Xy, s)
with:

q(.’l)’,S) . g?l(quv 8) 9?2('%.7X7 3) q(O,S) (A-6)
y(ZL‘,S) ggl(waXa S) 932(3;7)(78) y(Xv 5)

The detail of entries of the transfer matrix for the non-uniform case G"(x, X, s) =
(97 (7, X, 5)) is listed in [24].
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