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Abstract— The Saint-Venant equations describe the dy-
namics of one dimensional open-channel flow. The paper
investigates linearized Saint-Venant equations modes and their
control. We show that it is possible to suppress the oscillating
modes over all the canal pool by a well-designed boundary
dynamic controller using only the water level measurement at
the downstream end of the pool. This controller is infinite
dimensional, and also not strictly proper, which makes it
difficult to implement on a real canal. However, a static control
of the oscillating modes can be performed with a well-designed
hydraulic structure. We therefore study the specific case of
a constant proportional controller on the oscillating modes
and show that they can be asymptotically attenuated by using
a controller that depends only on local flow characteristics.
Experimental results on a laboratory canal pool show the
effectiveness of the proposed control.

I. INTRODUCTION

The Saint-Venant equations describe the dynamics of
open-channel hydraulic systems, e.g. rivers, irrigation or
drainage canals, sewers, etc., assuming one dimensional
flow. First stated in 1871, these nonlinear partial differential
equations involving the discharge Q(x, t) and the water
depth Y (x, t) along one space dimension x have been
widely used by hydraulic engineers in their numerical
models [4].

Many authors contributed on the control of open-channel
hydraulic systems represented by Saint-Venant equations.
The contributions range from classical SISO control meth-
ods such as Smith predictor [10] to LQG control [7] or
H∞ robust control [8]. Recent approaches tried to take into
account the distributed feature of the system, either by using
a semigroup approach [11], or by a Lyapunov approach [5].

To the best of our knowledge, no references deal with
the problem of controlling the oscillating modes that ap-
pear on some types of canals, typically small canal pools.
These modes are due to the interaction of upstream and
downstream waves propagations which occur in subcritical
flow (i.e. when the wave celerity is larger than the water
velocity). Their amplitude can be very important for some
hydraulic conditions [4]. This phenomenon also appears on
the frequency response of linearized Saint-Venant equations
with boundary conditions in terms of discharges [6] (see
figure 1). The modes damping decreases when the discharge
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decreases. They can lead to overspilling, which is highly
undesirable for irrigation canals. Rather surprisingly, this
problem has never been considered from a control point of
view.
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Fig. 1. Bode plot of the transfer function relating upstream discharge
to downstream water elevation of a canal pool modelled with linearized
Saint-Venant equations for different discharges and a constant downstream
water elevation

The objective of the paper is to investigate linearized
Saint-Venant equations modes and their control. We show
that it is possible to suppress these oscillating modes over
all the canal pool by a well-designed boundary dynamic
controller using only the water level measurement at the
downstream end of the pool. However, this controller is
infinite dimensional, and also not strictly proper. This
property makes it difficult to implement on a real canal,
since the actuators have a finite bandwidth. We show that
this difficulty can be bypassed in a real canal, which is
usually controlled using hydraulic cross-structures such as
gates or weirs. Such a hydraulic structure has an interesting
feature: it structurally induces a local feedback between the
discharge and the water level, whatever the frequency. That
leads to investigate the effect of a proportional boundary
controller on the oscillating modes. We obtain the gain value
that achieves the best attenuation of oscillating modes over
all the canal pool.

For practical applications, where any flow regime can
be encountered, this study can only be done numerically.
Nevertheless, it is possible to get a complete analysis in
specific flow regimes (uniform flow), where closed-form
solutions can be obtained. This study is of primary interest,
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Fig. 2. Section of a canal

since we have recently shown that the properties of Saint-
Venant equations are qualitatively the same whatever the
flow regime [6].

These results are based on suitable simplifications of a
mathematical model of open-channel flow dynamics. It is
therefore important to validate the approach on a real canal.
The experimental results obtained on a canal located in
Portugal show the effectiveness of the proposed approach.

II. LINEARIZED SAINT-VENANT EQUATIONS
We present in this section the linearized Saint-Venant

equations, used to obtain a transfer matrix representation
of the system. A more detailed description is given in [6].

We consider in the paper a prismatic canal pool of length
X with uniform geometry. As already stated in introduction,
the Saint-Venant equations are hyperbolic nonlinear par-
tial differential equations involving the average discharge
Q(x, t) and the water depth Y (x, t) along one space di-
mension [2]. We consider small variations of discharge
q(x, t) and water depth y(x, t) around stationary values
Q0(x) = Q0 (m3/s) and Y0(x) (m) defined by

dY0(x)

dx
=
Sb − Sf0(x)

1 − F0(x)2
(1)

where Sb is the bed slope, F0 the Froude number F0 = V0

C0

with V0 the average velocity (m/s) and C0 =
√

gA0

T0
the

wave celerity (m/s), with T0 the water surface top width
(m), A0(x) the wetted area (m2) and g the gravitational
acceleration (m/s2). Throughout the paper, the flow is
assumed to be subcritical, i.e. F0 < 1.

The friction slope Sf0 is modelled with Manning-
Strickler formula [2]:

Sf0(x) =
Q2

0n
2

A0(x)2R0(x)4/3
(2)

with n the roughness coefficient (sm−1/3) and R0(x) the
hydraulic radius (m), defined by R0 = A0/P0 where P0 is
the wetted perimeter (m) (see figure 2).

Linearizing the Saint-Venant equations around these sta-
tionary values leads to (the dependance in x is omitted for
readability, and we denote with small letters the deviations
from stationary values):

T0
∂y

∂t
+
∂q

∂x
= 0 (3)

∂q

∂t
+ 2V0

∂q

∂x
− β0q + (C2

0 − V 2
0 )T0

∂y

∂x
− γ0y = 0 (4)

with β0 = − 2g
V0

(

Sb −
dY0

dx

)

, γ0 = V 2
0

dT0

dx +

gT0

[

(1 + κ0)Sb − (1 + κ0 − F 2
0 (κ0 − 2))dY0

dx

]

and κ0 =
7
3 − 4A0

3T0P0

dP0

dY .
The boundary conditions are the upstream and down-

stream discharges q(0, t) and q(X, t).
When the water depth is constant along the channel, the

left side of equation (1) is equal to zero and then, given
Q0(x) = Q0, the equilibrium solution Y0 can be deduced
by solving the following algebraic equation:

Sf (Q0, Y0) = Sb (5)

Analytical results with closed-form solutions can be
obtained in that case, called “uniform flow”.

We illustrate the paper on an experimental canal of the
University of Évora, located in Portugal. The experimental
canal is a trapezoidal and lined canal, with a general cross
section of bottom width 0.15 m, sides slope 1:0.15 (V:H)
and depth 0.90 m. The considered pool is 75 m long and
the average longitudinal bottom slope is about 1.5× 10−3.
The Manning friction coefficient is equal to 0.016 sm−1/3.

III. ANALYTICAL RESULTS IN UNIFORM FLOW
We develop here the complete results obtained in the

uniform case. First the Saint-Venant open-loop transfer
matrix is characterized, then the optimal dynamic controller
for the oscillating modes is obtained. The special case of a
proportional static controller is then considered.

A. Open-loop transfer matrix characterization
1) Saint-Venant transfer matrix: The Saint-Venant open-

loop transfer matrix can be obtained by applying Laplace
transform to the linear partial differential equations (3–4),
and solving the resulting system of Ordinary Differential
equations in the variable x, parameterized by the Laplace
variable s [6].

On this basis, the Saint-Venant transfer matrix relating the
water depth y(x, s) and the discharge q(x, s) at any point
in the canal to the upstream and downstream discharges is
given by [3], [9]:

y(x, s) = g11(x, X, s)q(0, s) + g12(x, X, s)q(X, s) (6)
q(x, s) = g21(x, X, s)q(0, s) + g22(x, X, s)q(X, s) (7)

with

g11(x,X, s) =
λ2e

λ2x+λ1X − λ1e
λ1x+λ2X

T0s(eλ2X − eλ1X)
(8)

g12(x,X, s) =
λ1e

λ1x − λ2e
λ2x

T0s(eλ2X − eλ1X)
(9)

g21(x,X, s) =
eλ1x+λ2X − eλ2x+λ1X

eλ2X − eλ1X
(10)

g22(x,X, s) =
eλ2x − eλ1x

eλ2X − eλ1X
(11)

and the eigenvalues are given by:

λ1,2(s) =
1

C0(1 − F 2
0 )

[

F0s+
gSb(1 + κ0)

2C0
∓
√

δ(s)

]

(12)
with δ(s) = s2 +

gSb(2+(κ0−1)F 2
0 )

V0
s+

g2S2
b
(1+κ0)

2

4C2
0

.



G
(1)
ku

(x,X, s) =
λ2e

λ2x+λ1X − λ1e
λ1x+λ2X + ku(s)λ1λ2

T0s (eλ2x+λ1X − eλ1x+λ2X)

T0s(eλ2X − eλ1X) + ku(s)(λ2eλ2X − λ1eλ1X)
(13)

G
(2)
ku

(x,X, s) =
T0s(e

λ1x+λ2X − eλ2x+λ1X) + ku(s)(λ2e
λ1x+λ2X − λ1e

λ2x+λ1X)

T0s(eλ2X − eλ1X) + ku(s)(λ2eλ2X − λ1eλ1X)
(14)

2) Poles of Saint-Venant transfer matrix: The open-loop
poles of Saint-Venant transfer matrix are obtained as the
solutions of equation T0s(e

λ2(s)X − eλ1(s)X) = 0. There is
a pole in zero (the canal pool acts as an integrator) and the
other poles verify the following equation:

s2+
2gSb

V0

(

1 +
κ0 − 1

2
F 2

0

)

s+
g2(1 + κ0)2S2

b

4C2

0

+
k2π2C2

0
(1 − F 2

0
)2

X2
= 0

with k ∈ N
∗ (the pole obtained for k = 0 simplifies with

a zero).
When Sb 6= 0, the poles pk are then given by:

pk =
gSb

V0

[

−1 −
κ0 − 1

2
F 2

0 ± (1 − F 2
0 )
√

∆(k)

]

(15)

with ∆(k) =
1−

(κ0−1)2

4 F 2
0

1−F 2
0

−
k2π2C2

0V 2
0

g2S2
b
X2 .

Let km ∈ N be the greatest integer such that ∆(km) ≥ 0;
then the poles obtained for 0 < k ≤ km are negative real,
and those obtained for k > km are complex conjugate, with
a constant real part (they are located on a vertical line in
the left half plane). Moreover, for k � 1 the poles can be
approximated by:

pk ≈ −
(α1 + α2)X

τ1 + τ2

±
2jkπ

τ1 + τ2

(16)

with α1 = T0Sb(2−(κ0−1)F0)
2A0F0(1+F0)

, α2 = T0Sb(2+(κ0−1)F0)
2A0F0(1−F0)

and
τ1 = X

C0+V0
the delay for downstream propagation, τ2 =

X
C0−V0

, the delay for upstream propagation.
This approximation allows to recover the classical ap-

proximation for oscillating modes, corresponding to the
interaction of two gravity waves, one travelling downstream
at speed V0 + C0 with attenuation factor α1, and one
travelling upstream at speed C0 − V0 with attenuation
factor α2. Indeed, with such an approximation, the transfer
function denominator is given by:

D(s) = 1 − e−(α1+α2)X−(τ1+τ2)s

whose roots coincide with the poles approximation (16).
Characterizing oscillating canal pools: Equation (15)

enables to characterize two types of canal, based on a non
dimensional variable χ = XSbT0

A0
classically considered by

hydraulic engineers [1]. To this purpose, let us introduce
the limit value given by:

χc = πF0

√

1 − F 2
0

1 − (κ0−1)2

4 F 2
0

(17)

which corresponds to ∆(1) = 0, and thus the minimum
value such that the first pole remains real. Then, if χ �
χc, the predominant hydraulic behavior is mainly linked to
surface waves interaction and if χ � χc, the predominant
behavior is linked to the mass transfer.

We focus in the paper on the canal pools with a dominant
oscillating behavior, i.e. corresponding to χ < χc.

B. Optimal mode dampening: dynamic controller

1) Closed-loop transfer matrix: Let the system be con-
trolled with a local upstream linear boundary controller
relating the water level and the discharge at X , the down-
stream end of the pool:

q(X, s) = ku(s)y(X, s) (18)

The closed-loop system is then given by:
(

y(x, s)
q(x, s)

)

=

(

G
(1)
ku

(x,X, s)

G
(2)
ku

(x,X, s)

)

q(0, s) (19)

with G(1)
ku

(x,X, s) and G(2)
ku

(x,X, s) respectively given by
equations (13) and (14) displayed on top of the page.

Transfer functions G
(1)
ku

(x,X, s) and G
(2)
ku

(x,X, s) de-
scribe the frequency response of the water level and the
discharge in any point x as a function of upstream discharge
with a local controller ku(s) at the downstream end of the
canal pool. Such a local controller can be used to control
the modes of the Saint-Venant equation.

2) Dynamic boundary control of oscillating modes: We
show in this section that it is possible to remove oscillating
modes over all the canal pool by using a dynamic boundary
controller.

Theorem 1: With a downstream boundary control de-
fined by

k∗u(s) = −
T0s

λ1(s)
(20)

the canal pool at uniform flow represented by the transfer
matrix (6–7) has no oscillating modes.

Proof: The oscillating poles of the closed-loop system
are solutions of the equation:

e(λ2(s)−λ1(s))X −
T0s+ ku(s)λ1(s)

T0s+ ku(s)λ2(s)
= 0 (21)

With the controller k∗u(s) given by equation (20), we get:

e(λ2(s)−λ1(s))X = 0 (22)

which has no solution and thus the system has no oscillating
modes.

Let us note that for any x ∈ [0, X] the transfer functions
G

(1)
k∗

u

and G(2)
k∗

u

are given by:

G
(1)
k∗

u

(x,X, s) = −
λ1(s)

T0s
eλ1(s)x

G
(2)
k∗

u

(x,X, s) = eλ1(s)x

and thus the only the downstream propagating waves re-
main. The canal is behaving as if it was semi-infinite, i.e.
the waves propagating downstream do not reflect on the



downstream boundary and the oscillating modes then disap-
pear. This is similar to the classical concept of “impedance
matching” for electrical networks.

−15

−10

−5

0

M
ag

ni
tu

de
 (d

B
)

10
−4

10
−3

10
−2

10
−1

10
0

0

10

20

30

P
ha

se
 (d

eg
)

Bode Diagram

Frequency  (rad/sec)

Fig. 3. Bode plot of k∗

u(s) for the experimental canal of the University
of Évora, discharge Q0 = 0.06 m3/s, water depth Y0 = 0.56 m.

The Bode diagram of k∗u(s) is depicted in figure 3 for
a canal pool. This stable, infinite-dimensional controller
strongly looks like a lead-lag filter. It is not strictly proper,
since it has a constant gain in high frequencies, given by:

lim
ω→∞

k∗u(jω) = T0(V0 + C0) (23)

Because it is not strictly proper, such a controller seems
difficult to implement on a real canal. This is true when the
control input is a discharge, since in this case, the actua-
tor bandwidth is necessarily limited. However, a constant
gain in high frequency can be implemented by using the
structural property of hydraulic structures such as gates or
weirs.

A hydraulic cross-structure is usually described by a
static nonlinear relation (obtained from Bernoulli’s law)
Q = f(Y,W ), where Q is the absolute discharge, Y the
water depth and W the gate opening or weir elevation.
When considering small variations around stationary values,
one gets the linearized equation q = k1y + k2w with
k1 = df

dY and k2 = df
dW . The gate opening w being typically

controlled by an electrical actuator, the bandwidth limitation
applies and the optimal controller cannot be implemented
by “dynamic” feedback through k2. It is thus only possible
to use the local static feedback k1 that directly links the
water level y to the discharge q to achieve a high frequency
control politics.

Moreover, we observe that at a frequency close to 10−1

rad/s (corresponding to the first oscillating mode), the
amplitude of the lead-lag filter has already reached its
asymptotic value (see figure 3), which justifies the use of a
proportional controller.

We will now study the effect of different values of ku

(that can be obtained with different gate characteristics) on
the oscillating modes by doing a root locus.

−0.08 −0.07 −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

real part

im
ag

in
ar

y 
pa

rt

k
u
=0

k
u
=+∞

k
u
=T(V+C)

Fig. 4. Roots locus for the Évora canal, discharge Q0 = 0.06 m3/s, water
depth Y0 = 0.56 m: poles (+) obtained for ku = 0, zeros (o) obtained
for ku = +∞, and closed-loop poles location (∗) for k∗

u = T0(V0 +C0)

C. Static boundary proportional controller

The closed-loop system poles for a local upstream pro-
portional controller of gain ku ∈ R

+ are given by the
solutions of equation:

ψ(s) := e(λ2(s)−λ1(s))X −
T0s+ kuλ1(s)

T0s+ kuλ2(s)
= 0 (24)

In general, there is no closed-form solution of equation (24).
However, it is possible to study the asymptotic root locus
for |s| � 1. We have the following

Proposition 1: When |s| � 1, the solutions of equation
(24) tend asymptotically towards

p̃k = −
(α1 + α2)X

τ1 + τ2

−
1

τ1 + τ2

log

(

T0X + kuτ2

T0X − kuτ1

)

±
2jkπ

τ1 + τ2

(25)
The proof is omitted for lack of space.
We recover the poles approximation of (16) when ku = 0.

When ku increases, the poles real part diminishes towards
−∞ for ku < T0(C0 + V0). Then, it increases when
ku > T0(C0 + V0), to finally tend towards − (α1+α2)X

τ1+τ2
−

1
τ1+τ2

log
(

τ2

τ1

)

when ku → ∞.
This also explains why poles and zeros are “intertwined”

or alternate along the imaginary axis. Zeros are obtained
for ku = +∞ and have a real part smaller than the one
of the open-loop poles (because τ1 < τ2); their imaginary
part is given by ±(2k+1)π/(τ1+τ2), because the complex
logarithm verifies log(−1) = ±jπ. This explains why the
poles and zeros alternate along the imaginary axis.

Figure 4 shows the root locus for the Évora canal, used
in the experimental section.

Figures 5, 6 and 7 represent the Bode diagram of the local
upstream controlled canal along the longitudinal abscissa
x, with different gains: ku = 0 in figure 5, ku = +∞ in
figure 6, and k∗u = T0(V0 +C0) in figure 7. It is clear that a
constant controller k∗u dramatically dampens the oscillation
modes over all the canal pool. Indeed, a constant controller
leads to a very close performance to the one obtained with
a dynamic controller ku(s).
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Fig. 5. Spatial Bode diagram of the canal in open-loop (ku = 0)
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Fig. 6. Spatial Bode diagram of the local upstream controlled canal with
ku = +∞

With such a local upstream proportional controller, the
water level oscillations can be damped from 25% to 170%
according to the abscissa and up to 80% for the discharge
oscillations.

D. Local downstream control of oscillating modes

Similar results can be obtained for a local downstream
controller q(0, s) = kd(s)y(0, s). In that case, for the
optimal controller, the waves travelling upstream are not
reflected on the upstream boundary. The optimal controller
k∗d(s) is given by:

k∗d(s) = −
T0s

λ2(s)

The corresponding static gain in high frequencies is given
by:

lim
ω→∞

k∗d(jω) = T0(V0 − C0) (26)
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Fig. 7. Spatial Bode diagram of the local upstream controlled canal with
k∗

u = T0(C0 + V0)

IV. EXTENSION TO NON-UNIFORM FLOW
For non-uniform flow conditions, there are no more

analytical results concerning Saint-Venant equations. The
Saint-Venant transfer matrix is obtained by solving the
ordinary differential equation:

d

dx

(

q(x, s)
y(x, s)

)

= As(x)

(

q(x, s)
y(x, s)

)

(27)

with As(x) =

(

0 −T0(x)s
−s+β0(x)

T0(x)(C0(x)2−V0(x)2)
2V0(x)T0(x)s+γ0(x)

T0(x)(C0(x)2−V0(x)2)

)

,

and the solution has to be computed numerically (see [6]
for computational aspects).

However, the asymptotic behavior in high frequencies can
be shown to be similar as in uniform flow, i.e. for |s| � 1,
the controller k∗u(s) tends towards a constant gain, equal to
T0(X)(C0(X) + V0(X)).

Therefore, for high frequencies, the “optimal” controller
k∗u is only determined by the local characteristics of the
flow. The corresponding gain leads to similar graphs as
figures 5, 6 and 7 in non uniform flow.

We have therefore shown that it is possible to attenuate
the resonant modes over all the canal pool by using a well-
designed proportional boundary control. This controller uses
only boundary water levels measurements. In this control
problem, the overall performance is not only linked to
the behavior at the boundary of the canal pool, since the
problem is a distributed one. This is usually hidden in the
classical input-output view of the problem. A remarkable
fact is that a simple proportional boundary controller en-
ables to ensure good performance over all the canal pool.
This result will be tested experimentally in the following
section.

V. APPLICATION
For the Évora canal, which is an experimental canal,

we could use an very rapid actuator (a motorized valve)
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Fig. 8. Water level y(X) and outlet discharge without and with the local
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that enabled to bypass the bandwidth limitation problem.
The controller was tested for the first oscillating mode, in
reaction to an upstream sinusoidal input at the resonant
frequency.

The canal inlet is equipped with a motorized flow control
valve, that delivers a discharge u1. The canal pool is excited
with a sinusoidal input discharge u1 = 0.01 + 0.005 sinωt,
with ω = 0.082 rad/s, corresponding to the first oscillating
mode frequency. There is an offtake p at the downstream
end of the pool of the orifice type with additional external
pipe, equipped with an electromagnetic flowmeter and a
motorized butterfly valve. Five water level sensors are
installed within offline stilling wells distributed along the
canal pool. Only the sensor located at the downstream end
is used by the controller. The other sensors are used for
illustration purposes. The controller is implemented on the
offtake p, which can react quickly. No control is performed
until t = 1250 s (i.e. the outlet discharge is imposed to a
constant value). Then, the controller is put on (see figure 8).
The water level oscillations are dramatically reduced, and
this is also the case along the whole canal pool (see figure
9).

VI. CONCLUSION

The paper provides a detailed study of the oscillating
modes of linearized Saint-Venant equations. We show that a
local boundary dynamic controller can exactly dampen the
modes. A proportional local control can also be efficient
to dampen the modes. A root locus technique is used to
characterize the poles behavior, with an asymptotic study
for high frequencies. Experimental results on a real canal
show the effectiveness of the control method.

This result sheds a new light on the usefulness of gates in
open-channels: from a control point of view, they were clas-
sically analyzed as elements inducing a coupling between
canal pools. The system then becomes multivariable, which

0 500 1000 1500
0.45

0.5

0.55
water depths (m)

time (s)

y(0)

0 500 1000 1500
0.4

0.6

0.8

time (s)

y(X/4)

0 500 1000 1500
0.5

0.55

0.6

time (s)

y(X/2)

0 500 1000 1500
0.55

0.6

0.65

time (s)

y(3X/4)

Fig. 9. Water levels along the canal without and with the local proportional
controller k∗

u

makes difficult the design of decentralized controllers. We
show here that the gates also have a great interest: they
stabilize the canal pool and dampen the oscillating modes,
which were considered as difficult to control directly.
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