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Abstract

The article investigates the optimal performance of
feedback controlled open-channel systems represented
by a linear advection-diffusion equation. We show that
the performance given by the maximal achievable band-
width over which the sensitivity function stays below
one for such a system is structurally limited. This re-
sult is obtained using different tools. Firstly, an ap-
proximate value is computed with stability considera-
tions. A close result is also obtained putting the prob-
lem in the H∞ framework. We finally compare the pre-
vious results with a qualitative approach using Bode’s
ideal loop transfer function.

1 Introduction

Faced to the increasing demand in water savings, hy-
draulic engineers use automatic control techniques in
order to obtain a better performance in real-time oper-
ation of open-channel systems. The open-channel sys-
tem considered are made of a network of river reaches
controlled by a finite number of dams situated up-
stream. The overall system forms a multiple-input
multiple-output system, which is the interconnection of
several single-input single-output sub-systems. It can
be proved that the performance of the MIMO system
which possesses a specific structure can be linked to the
one of the SISO sub-systems. The paper will therefore
focus on the analysis of a single reach represented by a
SISO transfer function. The discharge is supposed to
be measured at the downstream end of the river reach
and there is a finite number of intermediate pumping
stations distributed along the reach which provide wa-
ter to consumers (typically farmers who irrigate fields).
The objective of the controller is to keep the measured
downstream discharge close to a target despite unmea-
sured users’ withdrawals.
The dynamics of these open-channel hydraulic systems
are represented by a partial derivative equation, or in
the frequency domain by an irrational transfer func-
tion.

The aim of this paper is to show that the achievable
performance of such open-channel hydraulic systems is
structurally limited. As the system is subject to un-
measured perturbations acting at the output, we seek
the maximum frequency range where attenuation can
be obtained. To this purpose, we examine classical lim-
itations as Bode integral constraints [9] and show that
they do not constraint in direct way the achievable sen-
sitivity. In fact, we show that the stability constraint
limits the bandwidth like in cases of delayed systems
[11].
Another way to study the considered problem is to put
it into the H∞ framework. Recent work allow to solve
the sensitivity problem for irrational systems (see e.g.
[13, 15, 5] and references therein). Unfortunately, the
required conditions in [15] are not satisfied in our case.
We then consider the approach proposed in [14] where
the solutions are obtained using finite dimensional ap-
proximations of the irrational system and computation
of classical H∞ solution for rational systems.
The last part of the paper proposes a more realistic
design with high frequencies constraints on the input.
This “mixed sensitivity” criteria allows to take into ac-
count actuator limitations and delay margin require-
ments. We end the paper by a remark on the interest
of the heuristics associated to Bode’s ideal loop trans-
fer.

2 Problem statement

2.1 Considered problem
The system considered in this paper is a controlled river
where the action variable is the upstream discharge and
the measured variable is the downstream discharge (see
figure 1). The river is used to deliver water from the
upstream dam to various consumers pumping water
along the reach (farmers irrigating their fields, indus-
tries, etc.). The objective of the controller is to keep
the measured downstream discharge close to a target
despite unmeasured users’ withdrawals.

In other terms, the control objective is to use the up-
stream discharge u in order to keep the downstream
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Figure 1: Dam-river system considered

discharge y as constant as possible, which means that
the control should attenuate the unmeasured perturba-
tions w. This is a problem of regulation or desensitivity.
This objective should be attained with minimum gain
and phase margins.

As the perturbations wi are all unmeasured, they can
be aggregated into one point without loss of generality.
The system is then represented with all the withdrawals
gathered at the downstream end by the equation:

y = G(s)u + H(s)w (1)

with H(s) the transfer function for the withdrawals w,
y = q(X, s), u = q(0, s) and G(s) corresponding to the
Hayami transfer function.

2.2 Hayami model
The Hayami equation is a linear partial derivative equa-
tion representing the discharge transfer in a river reach
around an equilibrium point:

∂q

∂t
+ C

∂q

∂x
−D

∂2q

∂x2
= 0 (2)

where

• q is the discharge [m3/s],

• C the celerity coefficient [m/s] and

• D the diffusion coefficient [m2/s].

This equation is obtained by linearizing the so-called
diffusive wave equation around a reference discharge Qr

[4]. Parameters C and D can be expressed as functions
of Qr and other physical parameters of the river reach
[12]. For a uniform large rectangular river reach, one
gets:

C =
5I0.3Q0.4

r

3L0.4n0.6
and D =

Qr

2LI

with I the slope of the reach, L the width, n the Man-
ning coefficient.

The relation between upstream and downstream dis-
charge can also be expressed as a transfer function
using Laplace transform. Thus, fixing a downstream

limit condition of the type limx→∞
∂q
∂x = 0, one gets

the Hayami transfer function:

G(s) = e(
C−
√

C2+4Ds
2D )X (3)

with X the length of the reach [m] and s the Laplace
variable.

The river system considered in the applications
throughout the paper is a 10 km long river with a uni-
form large rectangular geometry (width L = 8 m, slope
I = 0.0005, Manning coefficient n = 0.05) and Qr = 2
m3/s.

Remarks:
1. It can be shown that G(s) is stable and belongs to
the class of transfer functions defined by Callier and
Desoer [3].
2. A first order with delay is a good approximation of
the Hayami transfer function for low frequencies. This
approximation is usually considered in hydrology [6].
As shown in figure 2, this approximation is rather crude
concerning the group delay1, which decreases with fre-
quency.
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Figure 2: Group delay of G(s)

3 Obtaining maximal performance bounds

In this section, we address the following question:
“What is the best achievable performance in perturba-
tions attenuation?”. In our context, we try to attenuate
perturbations acting on the output of the system (see
figure 3). This requirement can be formalized by direct
constraints on the output sensitivity function. The per-
formance considered is the maximum frequency ωs such
that the output sensitivity function S = (1 + GK)−1

stays below one

ωs = max{ω1 : |S(jω)| < 1, ∀ω < ω1}
1The group delay of G(jω) is defined by − ∂\G(jω)

∂ω
[10].



In this section, we first examine the performance lim-
itations induced by the group delay by looking at the
Bode sensitivity and stability. We secondly propose an
H∞ criteria which incorporates more realistic design
constraints and a way to obtain a rational controller
which is an approximation of the optimal one.
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Figure 3: Feedback system with output perturbation

3.1 Approximate value of ωs

For systems described by rational transfer functions,
the structural limitation of performance is now clearly
understood (see e.g. [2, 8, 1]). This is more complicated
in the case of systems described by irrational transfer
function.

Following the line of [9], it is possible to prove that the
Bode sensitivity integral theorem can be extended to
our case and gives the following constraint:

∫ ∞

0

log |S(jω)|dω = 0

if the closed loop system is internally stable.

Rather surprisingly, as in the case of rational systems
with a time-delay [10], the Bode integral does not im-
poses supplementary constraint on the sensitivity in-
tegral other than the one already obtained for stable
minimum phase systems. As proved by Horowitz [11],
the real constraint concerns the stability of S. Ac-
tually, he proved that the frequency range where the
open-loop system L(s) = G(s)K(s) has a gain greater
than one is limited by a given frequency ωs [11, chap.
7.12.]. In our case, considering that the system is simi-
lar to a time-delay system, an approximate value of this
frequency is given by ωc such that arg G(jωc) = −π.
Since

arg G(jω) = − X√
2D

√
−C2

4D
+

√
C4

16D2
+ ω2

then,

ωs ≈ πC

X

√
1 +

4π2D2

C2X2
= 1.92 10−4 rad/s (4)

This value is obtained by considering that the Hayami
is fully an inner factor, which is not the case. Therefore,
as some phase is given by the outer part, the real upper
bound is higher than this value.

3.2 Pure sensitivity problem
Another way to examine this problem is to restate the
considered problem as an optimization problem. As
proved by Zames [16], the sensitivity problem can be
recast as a minimization of a weighted H∞ norm prob-
lem. In our case, we define a weighting function W1

which allows to specify the frequency range where at-
tenuation can be achieved, solve the following problem:

µ = inf
K
‖W1S‖∞ (5)

While µ < 1, we reshape W1 in order to increase the
bandwidth where W1 is greater than one, until µ is
close to one.

The pure sensitivity problem (5) is hard to solve in an
approximative way (see [14, sec. 4]), but in our case,
linked to the existence of structural bandwidth con-
straints, it is possible to use a well-posed mixed sen-
sitivity problem to approximate the problem. For the
sake of brevity, we do not expose the procedure for this
particular problem, since the same one is used in the
sequel, with a more realistic constraint. The figure 4 is
obtained with the procedure proposed by Rodriguez in
[14]. The optimal controller is achieved with an accu-
racy of ε = 0.1. The maximum performance obtained
is ωs = 2.4 10−4 rad/s, which is compatible with the
value (4) given above.
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Figure 4: Sensitivity functions for different rational ap-
proximations and weight 1/|W1(jω)|

3.3 A constructive approach
In the previous section, we obtained a hard bound with-
out any classical constraint, like gain margin, phase
margin and delay margins. In this section, we now
consider a more realistic H∞ criteria, which explicitly
shapes the controller under direct constraints on the
control. As the original system G(s) is described by
an irrational transfer function, we compute a rational
approximation Gn(s) which can be used to solve the
control problem stated above.



The problem of finding the best achievable performance
for open-channel hydraulic systems is considered in the
H∞ framework: we will solve a mixed sensitivity prob-
lem with constraints on S and KS.

The controller K has to reject non measured pertur-
bations (here the withdrawals w). This can be stated
as an mixed sensitivity optimal control problem, using
the H∞ norm:

µ = inf
K

∥∥∥∥
(

W1S
W2KS

)∥∥∥∥
∞

where W1 and W2 are weighting functions taking into
account performance and robustness requirements. We
shape W1 and W2 in order to obtain at least a gain
margin of 9 dB, a phase margin of 65 degrees and a
delay margin of 6 h when µ ≤ 1.

When the plant is described by a rational transfer func-
tion, this problem is fully understood and solved (see
e.g. [7]). Solutions exist for irrational transfer func-
tions (see e.g. [13, 15] and references therein). Unfor-
tunately, the required conditions in [15] are not satis-
fied in our case since no rational weighting function W2

exists such that W2Go and (W2Go)−1 belong to H∞,
where Go is the outer factor of G.

Following the procedure proposed by Rodriguez [14],
we can use a rational approximation to obtain an ap-
proximate solution with a guaranteed bound.

G(s)+
- u

yK(s )r

W 1(s) W 2(s) z 2z 1

Figure 5: Mixed sensitivity problem

Rational approximation: In the sequel, we
will use rational approximation models in order to
solve optimization problems. Stable rational approx-
imations of Hayami transfer function are obtained by
mean square rational approximations of various orders
on a finite frequency range. The error for different or-
ders is plotted on figure 6.

The 10th order approximation model gives an error of
−90 dB, which corresponds to 3 10−5.

Mixed sensitivity controller design: Let us
define

B =
1

‖W2‖∞ (‖W1‖∞ + ε)
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Figure 6: Error |G − Gn| for different orders of approxi-
mation n

and let us assume

‖Gn −G‖∞ ≤ δ

where δ is such that :

δ = min{ ε

‖W1‖∞B
,

ε

B
,

1
B
}

We define below optimal and suboptimal solutions of
our problem in the infinite-dimensional case and in the
rational case. The optimal solution is defined by:

µopt = inf
Q∈H∞

∥∥∥∥
(

W1(1 + GQ)
W2Q

)∥∥∥∥
∞

where Q = K(1 + KG)−1 is the Youla parameter and
assumed stable,

and a suboptimal solution Qo such that
∥∥∥∥
(

W1(1 + GQo)
W2Qo

)∥∥∥∥
∞
≤ µopt + ε

Moreover, let us define the sub-optimal solution built
on the basis of the rational approximation Gn of G:

∥∥∥∥
(

W1(1 + GnQn)
W2Qn

)∥∥∥∥
∞
≤ µn + ε

where µn is the optimal value of the H∞ norm:

µn = inf
Q∈RH∞

∥∥∥∥
(

W1(1 + GnQ)
W2Q

)∥∥∥∥
∞

Following theorem 3.1 in [14], we have the following
inequality

|µopt − µn| ≤ 2ε



In our specific case, one has B = 2, ε = 3 10−5 and
then for the 10th order approximation of G, we have

|µopt − µn| ≤ 6 10−5

Figure 7 shows the different values of Qn when the
order of the approximation increase. Until the 8th order
approximation, the solutions remain very close.

The result obtained in this case concerning the max-
imum performance problem is ωs = 4.36 10−5 rad/s.
We also get a controller achieving the following robust-
ness margins: a gain margin of 9.13 dB, a phase margin
of 67 deg and a delay margin of 7 hours.
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Figure 7: Youla parameter Q for different orders of ap-
proximation n

3.4 A qualitative approach using Bode’s ideal
transfer function
The results obtained by the numerical approach above
can be compared to the ones given by a heuristic ap-
proach based on Bode’s ideal transfer function. Follow-
ing the results of Aström [1], we give a priori bounds on
the maximum achievable bandwidth using two require-
ments, one in terms of phase margin, the other one in
terms of modulus margin.

Phase margin limitations: The process is
factored as G(s) = Gmp(s)Gnmp(s) where Gmp is
the minimum phase part and Gnmp the non-minimum
phase part, with |Gnmp(jω)| = 1.

The open-loop transfer function L(s) = Gmp(s)K(s) is
supposed to have the ideal shape suggested by Bode
[2]:

L(s) = (
s

ωgc
)ngc (6)

ωgc is the gain cross-over frequency, smallest frequency
where |L(jωgc)| = 1. The parameter ngc is the slope
at the cross-over frequency. The transfer function (6)

has the properties that d log |L(jω)|/d log ω = ngc and
arg L(jω) = ngcπ/2.

The inequality for the gain cross-over frequency is then
obtained as follows. Requiring a phase margin of φm

leads to

arg L(jω) = arg Gnmp(jω) + ngc
π

2
≥ −π + φm

The cross-over frequency then satisfies the inequality

arg Gnmp(jωgc) ≥ −π + φm − ngc
π

2
(7)

For the Hayami transfer function, the cross-over in-
equality (7) leads to

X√
2D

√
−C2

4D
+

√
C4

16D2
+ ω2

gc ≤ π+ngc
π

2
−φm = 2αm

which is equivalent to

ωgc ≤ 2αmC

X

√
1 +

16α2
mD2

C2X2

As C and D depend explicitly on the discharge Qr,
it is possible to evaluate the limitation (see figure 8,
where ngc = −1 and the required phase margin is
φm = π/4). One observes that the maximal bandwidth
decreases when the discharge decreases and when the
reach length increases. This is conform to physical ob-
servations, as the delay increases in these cases.

For a reference discharge Qr = 2 m3/s, the obtained
bound is ωgc = 4.65 10−5, which is coherent with the
value obtained numerically.
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Modulus margin limitations: Following
Aström [1], we investigated the relation between the
cross-over frequency and the maximal values of the
sensitivity function S = (1 + L)−1 and the comple-
mentary sensitivity function T = L(1 + L)−1, denoted
by:

Ms = max
ω
|S(jω)|

Mt = max
ω
|T (jω)|

We performed a numerical study to evaluate the lim-
itation on the cross-over frequency ωgc implied by re-
quirements on Ms and Mt for Hayami transfer function.
The maximum values of |S(jω)| and |T (jω)| are eval-
uated for different values of ωgc. The result is given
as a function of the “normalized” frequency ωgcX/C
(X/C is a rough estimate of the time-delay of Hayami
transfer function).

In order to have Ms ≤ 2 and Mt ≤ 2, the limitation on
ωgc is:

ωgc ≤ 0.7
C

X
= 4.13 10−5 rad/s

Which is once again coherent with the values obtained
previously.

4 Conclusion

This paper has shown that the optimal performance
of feedback controlled open-channel systems repre-
sented by a linear advection-diffusion equation is struc-
turally limited. The maximal achievable bandwidth
over which the sensitivity function stays below one is
evaluated using different tools. An approximate value
is computed with stability considerations. A construc-
tive approach is then performed by designing firstly
a pure sensitivity, then a mixed sensitivity H∞ opti-
mal controller on a rational approximation of the sys-
tem. The mixed sensitivity controller exhibits good
robustness margins, which are needed in an applica-
tion perspective. This numerical approach gives results
similar to the ones obtained by a qualitative approach
using Bode’s ideal loop transfer function. Using the
ideal loop transfer function introduced by Bode, we
obtained constraint on the maximum achievable band-
width for open-channel hydraulic systems described by
Hayami equation (2) for prescribed phase margin and
for modulus margins requirements. In the case of pre-
scribed phase margins, the bound is obtained analyti-
cally, which enables to give a priori bounds for a whole
family of systems.

This result validates the approximation approach
widely used by hydraulic engineers when designing a
controller for such systems. It also enables to give a
priori bound on the bandwidth over which one should
approximate the system, which is important for the ra-
tional approximation problem.
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[15] O. Toker and H. Özbay. H∞ Optimal and Suboptimal
Controllers for Infinite Dimensional SISO Plants. IEEE
Trans. Aut. Contr., 40(4):751–755, 1995.

[16] G. Zames. Feedback and optimal sensitivity: Model
reference transformations, multiplicative seminorms, and
approximate inverses. IEEE Trans. Aut. Contr., 26(2):301–
320, 1981.


