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Abstract

The paper presents robust design methods for the automatic control of a dam±river system, where the action variable

is the upstream ¯ow rate and the controlled variable the downstream ¯ow rate. The system is modeled with a linear

model derived analytically from simpli®ed partial derivative equations describing open-channel ¯ow dynamics. Two

control methods (pole placement and Smith predictor) are compared in terms of performance and robustness. The pole

placement is done on the sampled model, whereas the Smith predictor is based on the continuous model. Robustness is

estimated with the use of margins and also with the use of a bound on multiplicative uncertainty taking into account the

model errors, due to the nonlinear dynamics of the system. Simulations are carried out on a nonlinear model of the river

and performance and robustness of both controllers are compared to the ones of a continuous-time PID control-

ler. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Open-channel irrigation system; Time delay; Robust control; Pole placement; Smith predictor; PID

controller

1. Introduction

As water is becoming precious and rare, there is a growing interest for advanced management
methods that prevent wastage of this vital resource. Irrigation is acknowledged as being the ®rst
water consumer in the world and many irrigation systems are still being managed manually,
which leads to a low e�ciency in terms of water delivered versus water taken from the resource.
Automation is recognized as a possibly e�ective means to increase this e�ciency [1].

One-dimensional open-channel ¯ow dynamics are well represented by nonlinear partial dif-
ferential equations (Saint±Venant equations), that are not easy to use directly for control design.
Using linear approximated models, Papageorgiou et al. [2,3] and Sawadogo [4] already proposed
design methods for dam±river open-channel systems, but they did not take into account ro-
bustness requirements, which are essential, especially for nonlinear systems controlled with linear
regulators. As the process considered is dominated by long, varying time delays, the robustness to
time delay variations is very important. Kosuth [5] studied the poles migration for varying time
delays, but did not end with a reliable tuning method for robust control. Such a robust design

Applied Mathematical Modelling 23 (1999) 829±846

www.elsevier.nl/locate/apm

* Corresponding author. E-mail: xavier.litrico@cemagref.fr
1 E-mail: didier.georges@lag.ensieg.inpg.fr

0307-904X/99/$ - see front matter Ó 1999 Elsevier Science Inc. All rights reserved.

PII: S 0 3 0 7 - 9 0 4 X ( 9 9 ) 0 0 0 1 3 - X



approach is fairly recent for automatic control of irrigation systems. Only Corriga et al. [6], Jreij
[7], Schuurmans [8] and Seatzu [9] have mentioned and evaluated model uncertainities. Their
approach was restricted by the control of canal systems, where the elevation is controlled
with intermediate gates, which is not the case for dam±river systems. Signi®cant nonlinearities are
encountered in the latter case, that make it compulsory to evaluate controller stability robustness.

The paper develops two classical SISO methods for the ¯ow control of a dam±river system and
compares their robustness to modeling errors, using the models obtained in the companion paper
[10]: the nominal model is derived from simpli®ed Saint±Venant equations and the robustness of the
design is evaluated using the bound on multiplicative uncertainty, which captures possible varia-
tions in functioning points (i.e. di�erent reference ¯ow rates around which the process is linearized).

Firstly, a continuous-time Smith predictor controller is designed with a robust design method.
Then, a discrete-time pole placement RST controller is designed, with a robust analysis. The pole
placement is done on a sampled model of the system, because continuous-time pole placement
methods cannot deal with in®nite dimensional transfer functions as time-delays. A continuous-
time PID controller is also designed and tuned following Haalman's rule, well suited for systems
dominated by time-delays [11], to compare its performances to one of both the robust controllers.

The paper is organized as follows: Section 2 gives a description of the system and the design
goals in terms of automatic control, Section 3 details the design methods, after a recall of classical
robustness results. Section 4 shows the nonlinear simulation results, and some concluding re-
marks are given in Section 5.

The main contribution of the paper is the application and comparison of well-known robust
control design and analysis methods to a nonlinear delay dominated dam±river system.

2. System description and design goals

2.1. Presentation of the system

The irrigation system considered the uses of natural rivers to convey water released from the
upstream dam to consumption places. Farmers can pump water in the river when they need it
without having to ask for it (it is an `on demand' management).

The (simpli®ed) system considered is depicted in Fig. 1, with a dam and one river reach with a
measuring station at its downstream end, and a pumping station just upstream. Pumping stations
are in fact distributed along the river. This is taken into account during the identi®cation process,
but for simplicity, it is supposed that all pumping stations can be aggregated into one at the end of

Fig. 1. Simpli®ed dam±river system.

830 X. Litrico, D. Georges / Appl. Math. Modelling 23 (1999) 829±846



the reach. As this discharge Qout is not measured and not controllable, it is considered as a
perturbation, that has to be rejected.

The controlled variable is the ¯ow rate at the downstream end of the river. The water elevation
is not controlled, as the water distribution is done through pumping stations, not using gravity
o�takes. The system is used mainly in summer for maize irrigation, when the ¯ow rate is quite
low. The control action variable is the upstream ¯ow rate, and there is a local (slave) controller at
the dam that acts on a gate such that the desired ¯ow rate is delivered.

2.2. Control objectives

The objectives are twofold:
· satisfy the water demand from farmers (i.e. the discharge Qout);
· keep the ¯ow rate at the downstream end of the reach close to a reference ¯ow rate (target),

de®ned for hygienic and ecological reasons.
The water demand can be predicted with a fairly good precision using weather forecast and soil-
plant models. The variations in the demand are then considered as perturbations (due to un-
predicted in¯ow or out¯ow), and have to be rejected by the controller.

Water demand predictions are used in an open loop controller, and a feedback controller is
used to meet the second objective.

The main problem encountered in such systems is the possible instability due to varying time
delays. To ®nd a way to design a robust controller is therefore very interesting.

2.3. Modeling of the system and uncertainty description

The system is modeled by a second order plus delay transfer function:

F �s� � exp�ÿss�
�1� sK1��1� sK2� :

The uncertainties due to di�erent reference discharges are represented as an output multiplicative
uncertainty. This multiplicative uncertainty captures time delay as well as dynamics variations,
which are due to the nonlinearity of the process.

For a reference discharge Q0 2 Qmin;Qmax� �, the transfer function F(s) is written as

F �s� � �1� Dm�s��F0�s� �1�
with jDm�jx�j6 lm�x� 8x. F0(s) is the nominal model used to design the controller and lm the
bound on the multiplicative uncertainty Dm.

In Fig. 2, the input u corresponds to the upstream ¯ow rate Qupstream, the output y to the
downstream ¯ow rate Qdownstream and w to the aggregated withdrawal Qout.

Fig. 2. Feedback system.
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A discrete-time model F�(z) obtained by sampling of F(s) with a zero order hold with a
sampling period Te will also be used, with corresponding multiplicative uncertainty (see Litrico
and Georges [10] for the modeling part)

F ��z� � zÿrÿ1 c� dzÿ1 � ezÿ2

1ÿ azÿ1 � bzÿ2
:

3. Robust control design

3.1. Robustness evaluation

Classical robustness measures given by gain and phase margins are not well suited for eval-
uating robustness to time delay variations. Modulus and delay margins [12] are more useful.

In the following, the de®nitions of classical robustness margins are recalled, along with simple
explanations of their physical meaning. These margins o�er a simple way to evaluate the ro-
bustness of a controlled system, in terms of acceptable variations in gain, phase or time delay.

3.1.1. Robustness margins
Consider the feedback system of Fig. 2. It gives the following relations:

y � Syw� Ty�r ÿ b�; u � KSy�r ÿ bÿ w�
with

Sy � 1

1� L
; Ty � L

1� L
:

L�FK is the open loop transfer function, Sy the output-perturbation sensitivity function, and Ty

the complementary sensitivity function.
Ty and Sy are linked by the relation Sy � Ty � 1. The modulus margin Mm is de®ned as the

minimal distance of the Nyquist plot of L to the point (ÿ1, 0):

Mm � inffj1� L�jx�j; x 2 Rg:
Then

Mm � j1� L�jx�jmin � jSy�jx�ÿ1jmin � �jSy�jx�jmax�ÿ1 � 1

jjSyjj1
;

where jjSy jj1 represents the maximum of jSy�jx�j for x 2 R.
A pure time delay s introduces a phase lag xs proportional to the frequency x. The delay

margin Md is de®ned as the maximum of the time delays s such that the feedback system is stable
for a perturbed process RsF (Rs represents the delay operator of transfer function eÿss):

Md � u
xcr

;

where u is the phase margin (in radians), and xcr the crossover frequency (in rad/s) where the
Nyquist plot of L intersects the unit circle. These de®nitions are also extended to the case where
the Nyquist plot intersects the unit circle at more than one point.

3.1.2. General robustness results for unstructured uncertainty
The robustness margins presented above only consider variations in gain, phase or time delay

and not simultaneous variations. The use of unstructured uncertainty enables us to take into
account the global modi®cations of the nominal transfer function. The Nyquist theorem gives
general robustness results for such uncertainties.
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With uncertainties represented in the multiplicative form, a condition of robust stability is [13]

jTy0�jx�j � L0�jx�
1� L0�jx�
���� ���� < 1

jlm�jx�j 8x 2 R �2�

with L0�KF0, the nominal open loop transfer function.
This is a direct application of the Nyquist theorem, if the perturbed system has the same

number of unstable poles as the nominal system.
For discrete-time systems, the same theorem applies, in the following form:

jTy0�z�j � L0�z�
1� L0�z�
���� ���� < 1

jlm�z�j ; z � ejh; 06 h6 p:

3.2. Robust continuous Smith predictor design

3.2.1. Internal model control representation of the Smith predictor
The nominal transfer function F0 is factored in two terms, FM0 being the part without delay

F0�s� � FA0�s�FM0�s� �3�
with

FA0�s� � exp�ÿss0� and FM0�s� � 1

�1� sK10��1� sK20� :

The classical Smith predictor is usually represented as in Fig. 3. Such a controller is interesting
as, in the case of perfect modeling, the delay is eliminated from the closed loop equation [14]. The
transfer from the reference r to the output y (which is the complementary sensitivity function Ty)
is given by

Ty�s� � C�s�F �s�
1� C�s��FM0�s� ÿ FM0�s�exp�ÿss0� � F �s�� :

If F �s� � FM0�s�exp�ÿss0�, it gives

Ty0�s� � C�s�FM0�s�
1� C�s�FM0�s� exp�ÿss0�:

It is then possible to design the controller C(s) without taking the delay into account, as the
characteristic polynomial does not depend on the delay.

To study the robustness of this feedback system, the controller is rewritten in the form of
Internal Model Control [15] (see Fig. 4). The nominal complementary sensitivity function Ty0 is
then given by

Ty0�s� � Q�s�F0�s�:

Fig. 3. Classical Smith predictor.
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Q and C are linked by the following relation:

Q�s� � C�s�
1� C�s�FM0�s� :

3.2.2. Robust stability and performance of the Smith predictor
Robust stability: Using the IMC representation, the robust stability condition (2) becomes:
The system of Fig. 4 is stable for multiplicative uncertainties jDm�jx�j6 lm�x� if:

· the nominal system is stable;
· jQ�jx�F0�jx�j < lm�x�ÿ1 8x:

Robust performance: Nominal performance is speci®ed with an H1 constraint on nominal
sensitivity function Sy0 �Sy0 � 1ÿ Ty0�

jjSy0�jx�w2�jx�jj1 < 1

or

jSy0�jx�j < 1

jw2�jx�j 8x;
where w2 is a weighting function for performance.

For example, a choice of w2�MPÿ1, with MP a given positive real scalar ensures that the
Maximum Peak of the modulus of the nominal sensitivity function Sy0 stays below MP (see
Laughlin et al. [13] for di�erent choices of weighting functions w2).

The performance is robust when the inequality is respected for Sy�jx�, i.e. for all models in the
set described by F0 and the bound on the multiplicative uncertainty lm.

Robust stability and performance can be combined in one inequality

jTy0�jx�jlm�x� � j�1ÿ Ty0�jx��w2�jx�j < 1 8x
or

Ty0�jx�
�� ��

1ÿ 1ÿ Ty0�jx�
� �

w2�jx�
�� �� < lm�x�ÿ1 8x: �4�

This condition can be checked by plotting frequency responses of both terms of the inequality
[16].

The advantage of the IMC parametrization is that the design of the controller results in the
choice of a single design parameter, as the H2-optimal controller Q(s) can be calculated analyt-
ically, and a ®lter f(s) is added to ensure robustness to the feedback system

f �s� � 1

�1� ks�n

n is chosen to make f(s)Q(s) proper, and k is the design parameter of the IMC controller.

Fig. 4. IMC representation of the Smith predictor.
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If F �s� � FA0�s�FM0�s�, the H2-optimal controller Q minimizing the H2 norm of the nominal
error e for perturbations w, is given by [15]

Q � �FM0wM�ÿ1 F ÿ1
A0 wA

� 	
�;

where operator {~}� means that after a partial fraction expansion, all terms containing the poles
of F ÿ1

A0 are omitted.
Robust performance design is done by trial and error on parameter k.

1. For a given value of k, check condition (4).
2. If Eq. (4) is not satis®ed, increase k.
3. Repeat 1 and 2 until Eq. (4) is satis®ed.
If no value of k lead to satisfaction of Eq. (4), the performance requirements have to be lowered.

3.2.3. Application
The system considered is a 20 km long river reach with the following physical parameters

aC � 0:415 m=s; bC � 0:4; aD � 332 m2=s; bD � 1:

The discharge is supposed to be inside the interval [0.5, 5] m3/s.
It is represented by the nominal transfer function (3) with coe�cients: K10� 9995.1 +

3310.5j; K20� 9995.1 ÿ 3310.5j; s0� 24463 s, and the multiplicative uncertainty (1) bounded by
lm(x).

The performance weighting function w2 is chosen as

w2�jx� � 1

MP
; with MP � 3

which ensures that the maximum peak of |Sy | stays below 3 for all models in the set described by
the nominal model and the multiplicative uncertainty.

For F0(s) given by

F0�s� � FA0�s�FM0�s�;
a step perturbation input w(s)� 1/s (wM � 1/s, wA� 1), the optimal controller Q is given by

Q�s� � �FM0wM�ÿ1fF ÿ1
A0 wAg� � �FM0�s�=s�ÿ1fexp�ss0�=sg�

or

Q�s� � �1� sK10��1� sK20�:
As proposed by Laughlin et al. [13] the initial value for ®lter coe�cient iterations is given by

k0 � MP� 1

MPÿ 1

� �2
"

ÿ 1

#1=2,
x0;

where x0 is the frequency for which lm�x0� � 1.
The ®nal value obtained is k� 18577 s� 0.59k0, for which the robust performance condition is

satis®ed.
Figs. 5 and 6 show that the robust performance and robust stability conditions are satis®ed.
The robustness margins obtained for the three controllers are given in Table 1.
As we can check from Fig. 7, the sensitivity functions for the nominal and the uncertain

systems are below 3, which was the maximum peak (MP) allowed as a robust performance re-
quirement.
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3.3. Robust digital pole placement design

3.3.1. Digital RST controller
With the transfer function of the system written as

F ��z� � zÿrÿ1 c� dzÿ1 � ezÿ2

1ÿ azÿ1 � bzÿ2
� B�z�

A�z� ;

the RST regulator is represented in Fig. 8, where R, S and T are polynomials of z.
The output y is expressed as function of w, the output disturbance, yc the targeted output, and

b, the measurement noise

y � AS
AS � BR

w� BT
AS � BR

yc ÿ BR
AS � BR

b;

Fig. 5. Frequency responses of lm�x�ÿ1
(continuous line) and jTy0�jx�j=�1ÿ j�1ÿ Ty0�jx��w2�jx�j� (dashed), SP con-

troller.
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(argument z is omitted for readability).
Sensitivity functions are expressed as functions of polynomials R, S, A and B

Sy � AS
AS � BR

;

Fig. 6. Frequency responses of lm�x�ÿ1
(continuous) and jTy0�jx�j (dashed), SP controller.

Table 1

Robustness margins for the three controllers

Controllers SP RST PID

Gain margin (Mg) 3.24 3.49 2.36

Delay margin (Md) 19.6 h 16.4 h 9.2 h

Advance margin (Ma) 86.8 h 69.8 h 54.8 h

Modulus margin (Mm) 0.66 0.69 0.52

X. Litrico, D. Georges / Appl. Math. Modelling 23 (1999) 829±846 837



Fig. 7. Sensitivity functions for nominal system and perturbed systems (dashed ÿ5 m3/s- and dotted ÿ0.5 m3/s-lines), SP

controller.

Fig. 8. Structure of the `RST' regulator.
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Ty � BR
AS � BR

:

The open loop transfer function is

L � BR
AS

:

Stability of the closed loop system is ensured if the roots of AS + BR are inside the unit circle.

3.3.2. Robust pole placement [17]
The method provides a way to place poles of a feedback system with two design parameters, a

control horizon Tc and a ®ltering horizon Tf . It is based on the following heuristic remark, valid
for a stable process: the less the poles of the process are modi®ed by the feedback, the more robust
the closed loop system is with respect to model uncertainties.

The method proposes to place the poles of the feedback system from the poles of the nominal
process:
· In continuous-time the poles of the process which are to the right of a straight line x � ÿ1=Tc

are projected on this line.
· In discrete-time, the poles of the nominal system with modulus greater than Rc � exp�ÿTe=Tc�

are projected on the circle of radius Rc, the others are left in place.
This gives the n dominant poles (n is the degree of A�zÿ1�), and the n� 1 ®ltering poles are de-
termined with another parameter Tf and a real pole is added at exp�ÿTe=Tf�.

The closed loop polynomial has 2n� 1 zeros, determined with the two design parameters Tc

and Tf .
In order to reject constant perturbations, an integrator is included in the regulator, which

means that S(z) can be factorized in

S�z� � �zÿ 1�S 0�z�:
The pole placement problem is to ®nd polynomials R and S0, such that

A�z��zÿ 1�S0�z� � B�z�R�z� � P �z�:
P(z) being the desired characteristic polynomial (with roots at the desired locations) for the closed
loop system.

This Bezout equation can be written as a linear system in the polynomial coe�cients of R and
S0 and solved using linear systems resolution methods [18].

3.3.3. Application
The process considered is the same river reach as in Section 3.2.3, sampled with a sampling

period Te� 3600 s. The command horizon is Tc� 1 ´ Te, and the ®ltering horizon Tf � 7 ´ Te.
As the discrete-time process is obtained by sampling a continuous-time process, aliasing

is encountered for frequencies greater than the Nyquist frequency xN � p=Te (here xN �
8:7266 10ÿ4 rad/s).

The RST controller is robust stable with respect to multiplicative uncertainties, but does not
satisfy the robust performance condition, which is slightly violated (Fig. 9). Nonetheless, the
sensitivity functions for models corresponding to extreme ¯ow rates are below 3 (Fig. 10). This is
due to the fact that the uncertainties described by our multiplicative bound are overestimated
compared to real uncertainties due to variable reference discharges; the set of models described by
the nominal model and a multiplicative uncertainty bounded by lm is larger than the set of models
described by di�erent reference discharges. As we take into account more uncertainties than
necessary, we end with a slightly too restrictive condition.
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It should also be noticed that the modulus margin of the RST controller is better than the one
of the SP controller, whereas the SP controller is indeed more robust than the RST. This is due to
the fact that the classical margins only take into account the nominal open loop transfer function
and not the model uncertainties. This is why the graphs provided also show the perturbed sys-
tems, corresponding to extreme ¯ow rates.

3.4. PID controller design

3.4.1. Haalman's method
Both controllers are compared to a continuous-time PID controller obtained with Haalman's

method, suited for systems where dynamics are dominated by dead-time [11]. This is a loop
shaping method where the desired loop transfer function L0 is speci®ed, and the controller
transfer function is obtained as

K � L0

F
;

where F is the system transfer function.
Such an approach can give PID controllers provided that L0 and F are su�ciently simple.
For systems with a time delay s, Haalman has suggested to choose

L0�s� � 2

3ss
eÿss:

The value 2/3 was found by minimizing the mean square error for a step change in the set point.
This choice gives a sensitivity MP� 1.9 (or a modulus margin Mm� 1/1.9� 0.53), and a delay
margin

Md � 3pÿ 4

4
s � 1:36 s:

Fig. 9. Robust stability and robust performance conditions, RST controller.
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For systems with the transfer function

F0�s� � exp�ÿss0�
�1� sK10��1� sK20� ;

the controller obtained is a PID

K�s� � Kp 1

�
� 1

sTi
� sTd

�
with the parameters

Kp � 2�K10 � K20�
3s0

;

Fig. 10. Sensitivity functions for nominal and perturbed systems (dashed ÿ5 m3/s- and dotted ÿ0.5 m3/s-lines), RST

controller.
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Ti � K10 � K20;

Td � K10K20

K10 � K20

:

Such a controller cancels the poles of the system, which may lead to controllability problems if the
process is lag dominated, which is usually not the case in dam±river systems.

3.4.2. Application
With the river considered, the following coe�cients are obtained:

Kp � 0:5448;

Ti � 19990 s;

Td � 5546 s:

The PID controller is robust stable with respect to multiplicative uncertainties, but does not
satisfy the robust performance condition (Fig. 11).

Its robustness margins are rather good (cf. Table 1), but are not representative of its real ro-
bustness, as already mentioned. Its robustness is better evaluated by looking at Fig. 12.

4. Results of simulations and discussion

4.1. Simulations

Results of simulations given by both controllers are compared to those given by a continuous-
time PID controller, tuned following Haalman's method. Simulations are done on a nonlinear

Fig. 11. Robust stability and robust performance conditions, PID controller.
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model. The simulation scenario is an unknown disturbance rejection: an unpredicted withdrawal
of 0.5 m3/s occurs at time t� 30 h. The simulations are performed around an average ¯ow rate
(2 m3/s) and around a low ¯ow rate (0.5 m3/s). Results are presented for the three controllers with
the command signal and the output signal, for the Smith Predictor (SP), the pole placement
controller (RST) and the PID controller from left to right in Figs. 13 and 14.

4.2. Discussion

Results of simulation show that all controllers are stable, as suggested by the robustness
analysis in the frequency domain. It should be mentioned that we have no theoretical insurance
for this, as the stability is ensured by Eq. (2) for a set of linear models captured in the nominal
model and the multiplicative uncertainty, but not for the nonlinear system.

Fig. 12. Sensitivity functions for nominal (continuous line) and perturbed systems (dashed ÿ5 m3/s- and dotted ÿ0.5 m3/

s-lines), PID controller.
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The PID controller is the quicker to respond to unpredicted disturbances, but it is also the
more oscillating. As such oscillating commands would not be allowed in reality, it would have to
be ®ltered, therefore leading to slower responses. The overshoot in reaction of the withdrawal
around 0.5 m3/s is not acceptable, as one important objective is to save water and such reaction
would clearly lead to a waste of water.

The RST controller behaves well, although oscillating around Q0� 0.5 m3/s. The Smith
Predictor is a little slower than the other two, but gives realistic commands for all operating
points.

It is important to notice the fact that there is a trade-o� between robustness and performance.
A certain level of performance cannot be achieved without losing some robustness and respec-
tively, to increase the robustness of a feedback loop, the performance requirements must be
lowered. The same dilemma may occur in nonlinear control design systems, but a robust non-
linear controller should be more performing than a linear one, keeping the same robustness
requirements.

More than the results of simulation, where di�erent values of tuning parameters can be chosen
depending on the requirements, the emphasis is made on the tuning methods, and the robustness
analysis tools developed.

Fig. 14. Unknown disturbance rejection around Q0� 0.5 m3/s.

Fig. 13. Unknown disturbance rejection around Q0� 2 m3/s.
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Both tuning methods are easy to manage and robustness can be checked a posteriori. The
tuning parameters have a clear physical interpretation:
· The ®lter parameter k in the IMC design is called the robustness ®lter: the larger k, the more

robust the controlled system, but perturbations are rejected slowly.
· The robust pole placement method has two tuning parameters Tc and Tf ; Tc is a control ho-

rizon and Tf a ®ltering horizon. The larger they are, the slower the controlled system will be.
Their values can be adjusted by trial and error, using the pole location, or the value of robust-
ness margins as a tuning criteria.

On the other hand, the PID controller does not o�er clear tuning parameters and the method
may not be suited for other systems.

5. Conclusion

The paper presents some tools to check the robustness of feedback loops. The tools are il-
lustrated on two di�erent approaches:
· an a priori approach to design a robust continuous-time Smith predictor: the controller is de-

signed taking into account the multiplicative uncertainty on the nominal model;
· an a posteriori approach to design a robust discrete-time pole placement RST controller: the de-

sign parameters Tc and Tf are tuned by trial and error until satisfactory robustness margins
are obtained.

Controllers proved to be robust and have a good performance, compared to a PID controller
tuned with Haalman's method and both methods are suited for real-time applications.
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